-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 8c04f49
Showing
2 changed files
with
122 additions
and
0 deletions.
There are no files selected for viewing
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,114 @@ | ||
import numpy as np | ||
import pandas as pd | ||
import matplotlib.pyplot as plt | ||
from sklearn.metrics import accuracy_score | ||
from sklearn.model_selection import train_test_split | ||
from sklearn.neural_network import MLPClassifier | ||
plt.rcParams["font.sans-serif"] = "SimHei" # 解决中文乱码问题 | ||
# 清理内存 | ||
import gc | ||
import seaborn as sns | ||
import random | ||
|
||
# # from sklearn.model_selection import train_test_split | ||
# from sklearn.linear_model import LogisticRegression | ||
# from sklearn.preprocessing import LabelEncoder | ||
# from sklearn.metrics import accuracy_score | ||
# from sklearn import model_selection | ||
# from sklearn.neighbors import KNeighborsRegressor | ||
|
||
df_train = pd.read_csv(r'data/data_format1/train_format1.csv') | ||
df_test = pd.read_csv(r'data/data_format1/test_format1.csv') | ||
user_info = pd.read_csv(r'data/data_format1/user_info_format1.csv') | ||
user_log = pd.read_csv(r'data/data_format1/user_log_format1.csv') | ||
|
||
print(df_test.shape, df_train.shape) | ||
print(user_info.shape, user_log.shape) | ||
|
||
# 填充缺失值 | ||
user_info['age_range'].replace(0.0, np.nan, inplace=True) | ||
user_info['gender'].replace(2.0, np.nan, inplace=True) | ||
user_info['age_range'].replace(np.nan, -1, inplace=True) | ||
user_info['gender'].replace(np.nan, -1, inplace=True) | ||
|
||
# 聚合特征 | ||
seller_group = user_log.groupby(["seller_id", "action_type"]).count()[["user_id"]].reset_index().rename( | ||
columns={'user_id': 'count'}) | ||
|
||
# del user_log | ||
# gc.collect() | ||
|
||
# age_range,gender特征添加 | ||
df_train = pd.merge(df_train, user_info, on="user_id", how="left") | ||
df_train.head() | ||
|
||
total_logs_temp = user_log.groupby([user_log["user_id"], user_log["seller_id"]]).count().reset_index()[ | ||
["user_id", "seller_id", "item_id"]] | ||
total_logs_temp.rename(columns={"seller_id": "merchant_id", "item_id": "total_logs"}, inplace=True) | ||
df_train = pd.merge(df_train, total_logs_temp, on=["user_id", "merchant_id"], how="left") | ||
|
||
# 添加unique_item_ids特征 | ||
unique_item_ids_temp = \ | ||
user_log.groupby([user_log["user_id"], user_log["seller_id"], user_log["item_id"]]).count().reset_index()[ | ||
["user_id", "seller_id", "item_id"]] | ||
unique_item_ids_temp1 = unique_item_ids_temp.groupby( | ||
[unique_item_ids_temp["user_id"], unique_item_ids_temp["seller_id"]]).count().reset_index() | ||
unique_item_ids_temp1.rename(columns={"seller_id": "merchant_id", "item_id": "unique_item_ids"}, inplace=True) | ||
df_train = pd.merge(df_train, unique_item_ids_temp1, on=["user_id", "merchant_id"], how="left") | ||
|
||
# | ||
categories_temp = \ | ||
user_log.groupby([user_log["user_id"], user_log["seller_id"], user_log["cat_id"]]).count().reset_index()[ | ||
["user_id", "seller_id", "cat_id"]] | ||
categories_temp1 = categories_temp.groupby( | ||
[categories_temp["user_id"], categories_temp["seller_id"]]).count().reset_index() | ||
categories_temp1.rename(columns={"seller_id": "merchant_id", "cat_id": "categories"}, inplace=True) | ||
df_train = pd.merge(df_train, categories_temp1, on=["user_id", "merchant_id"], how="left") | ||
|
||
df_train.head(10) | ||
# 添加browse_days特征 | ||
browse_days_temp = \ | ||
user_log.groupby([user_log["user_id"], user_log["seller_id"], user_log["time_stamp"]]).count().reset_index()[ | ||
["user_id", "seller_id", "time_stamp"]] | ||
browse_days_temp1 = browse_days_temp.groupby( | ||
[browse_days_temp["user_id"], browse_days_temp["seller_id"]]).count().reset_index() | ||
browse_days_temp1.rename(columns={"seller_id": "merchant_id", "time_stamp": "browse_days"}, inplace=True) | ||
df_train = pd.merge(df_train, browse_days_temp1, on=["user_id", "merchant_id"], how="left") | ||
|
||
# 添加one_clicks、shopping_carts、purchase_times、favourite_times特征 | ||
one_clicks_temp = \ | ||
user_log.groupby([user_log["user_id"], user_log["seller_id"], user_log["action_type"]]).count().reset_index()[ | ||
["user_id", "seller_id", "action_type", "item_id"]] | ||
one_clicks_temp.rename(columns={"seller_id": "merchant_id", "item_id": "times"}, inplace=True) | ||
one_clicks_temp["one_clicks"] = one_clicks_temp["action_type"] == 0 | ||
one_clicks_temp["one_clicks"] = one_clicks_temp["one_clicks"] * one_clicks_temp["times"] | ||
one_clicks_temp["shopping_carts"] = one_clicks_temp["action_type"] == 1 | ||
one_clicks_temp["shopping_carts"] = one_clicks_temp["shopping_carts"] * one_clicks_temp["times"] | ||
one_clicks_temp["purchase_times"] = one_clicks_temp["action_type"] == 2 | ||
one_clicks_temp["purchase_times"] = one_clicks_temp["purchase_times"] * one_clicks_temp["times"] | ||
one_clicks_temp["favourite_times"] = one_clicks_temp["action_type"] == 3 | ||
one_clicks_temp["favourite_times"] = one_clicks_temp["favourite_times"] * one_clicks_temp["times"] | ||
four_features = one_clicks_temp.groupby( | ||
[one_clicks_temp["user_id"], one_clicks_temp["merchant_id"]]).sum().reset_index() | ||
four_features = four_features.drop(["action_type", "times"], axis=1) | ||
df_train = pd.merge(df_train, four_features, on=["user_id", "merchant_id"], how="left") | ||
|
||
# 缺失值处理 | ||
df_train.isnull().sum(axis=0) | ||
df_train = df_train.fillna(method='ffill') | ||
|
||
# 模型构建与调参 | ||
Y = df_train['label'] | ||
X = df_train.drop(['user_id', 'merchant_id', 'label'], axis=1) | ||
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.25, random_state=10) | ||
|
||
|
||
|
||
mlp = MLPClassifier(solver='lbfgs', activation='relu', alpha=0.1, random_state=0, hidden_layer_sizes=[10, 10]).fit( | ||
X_train, y_train) | ||
Predict = mlp.predict(X_test) | ||
Predict_proba = mlp.predict_proba(X_test) | ||
print(Predict_proba[:]) | ||
Score = accuracy_score(y_test, Predict) | ||
print(Score) | ||
# df_train = pd.merge(df_train, browse_days_temp1, on=["user_id", "merchant_id"], how="left") |