ReefDB is a minimalistic, in-memory and on-disk database management system written in Rust, implementing basic SQL query capabilities and full-text search.
To use ReefDB, you can choose between an in-memory storage (InMemoryReefDB
) or on-disk storage (OnDiskReefDB
).
use reefdb::InMemoryReefDB;
fn main() {
let mut db = InMemoryReefDB::new();
// Create a table with various data types
db.query("CREATE TABLE records (
id INTEGER PRIMARY KEY,
name TEXT,
active BOOLEAN,
score FLOAT,
birth_date DATE,
last_login TIMESTAMP,
description TSVECTOR
)");
// Insert data with different types
db.query("INSERT INTO records VALUES (
1,
'Alice',
TRUE,
95.5,
'2000-01-01',
'2024-03-14 12:34:56',
'Software engineer with expertise in databases'
)");
// Query with type-specific operations
db.query("SELECT * FROM records WHERE score > 90.0");
db.query("SELECT * FROM records WHERE birth_date > '1999-12-31'");
db.query("SELECT * FROM records WHERE active = TRUE");
db.query("SELECT * FROM records WHERE to_tsvector(description) @@ to_tsquery('database')");
}
use reefdb::OnDiskReefDB;
fn main() {
let mut db = OnDiskReefDB::new("db.reef".to_string(), "index.bin".to_string());
// Use the same SQL queries as with InMemoryReefDB
}
- ✅ In-Memory and On-Disk storage modes
- ✅ Basic SQL statements (CREATE, INSERT, SELECT, UPDATE, DELETE)
- ✅ ALTER TABLE with ADD/DROP/RENAME column support
- ✅ DROP TABLE functionality
- ✅ INNER JOIN support
- ✅ Primary key constraints
- ✅ Basic error handling system
- ✅ Rich data type support (INTEGER, TEXT, BOOLEAN, FLOAT, DATE, TIMESTAMP, NULL)
- ✅ INTEGER: Whole number values
- ✅ TEXT: String values with support for escaped quotes
- ✅ BOOLEAN: TRUE/FALSE values
- ✅ FLOAT: Decimal number values
- ✅ DATE: Date values in 'YYYY-MM-DD' format
- ✅ TIMESTAMP: Datetime values in 'YYYY-MM-DD HH:MM:SS' format
- ✅ NULL: Null values
- ✅ TSVECTOR: Full-text search optimized text type
- ✅ TSVECTOR data type
- ✅ Inverted index implementation
- ✅ Basic tokenization
- ✅ Memory and disk-based index storage
- ✅ @@ operator for text search
- ✅ Basic transaction structure
- ✅ Transaction isolation levels (ReadUncommitted, ReadCommitted, RepeatableRead, Serializable)
- ✅ Write-Ahead Logging (WAL)
- ✅ Transaction manager with locking mechanism
- ✅ Full ACID compliance
- ✅ Deadlock detection
- ✅ MVCC implementation
- ✅ Savepoints
- ✅ Autocommit
- ✅ B-Tree index implementation
- ✅ GIN index implementation
- ✅ CREATE INDEX and DROP INDEX support
- ✅ Index persistence for on-disk storage
- ✅ Basic query optimization with indexes
- Query Analyzer Framework
- Cost-based query planning
- Statistics collection and management
- Index usage analysis
- Join order optimization
- Query rewriting
- Query Plan Visualization
- Visual execution plan representation
- Cost breakdown analysis
- Performance bottleneck identification
- Statistics Management
- Table statistics (row counts, size)
- Column statistics (cardinality, distribution)
- Index statistics (size, depth, usage)
- Automatic statistics updates
- Basic aggregate functions (COUNT, SUM)
- ORDER BY implementation
- LIMIT and OFFSET support
- LEFT JOIN support
- Query timeout mechanism
- Memory-mapped storage
- Memory-mapped file handling
- Basic persistence
- Concurrent access support
- Page-level operations
- Buffer management
- Crash recovery
- Dynamic file resizing
- Memory-mapped index support
- Index compression
- Parallel query execution
- Query Performance Metrics
- Execution time tracking
- Resource usage monitoring
- Query plan effectiveness
- Index usage statistics
- Transaction monitoring
- Error logging and tracing
- Multi-column indexes
- Hash indexes for equality comparisons
- Bitmap indexes for low-cardinality columns
- Incremental indexing
- Index maintenance optimization
- Background index rebuilding
- Index fragmentation analysis
- Automatic index suggestions
- RIGHT JOIN
- OUTER JOIN
- CROSS JOIN
- FULL JOIN
- NATURAL JOIN
- SELF JOIN
- Additional aggregate functions (AVG, MIN, MAX)
- GROUP BY and HAVING clauses
- Window functions
- Common Table Expressions (CTEs)
- Subquery optimization
-
Advanced Index Types
- BM25 scoring with configurable parameters
- TF-IDF with normalization options
- Custom scoring functions
- Position-aware indexing
- Field norms support
-
Query Features
- Fuzzy matching with configurable distance
- Regular expression support
- Range queries
- Boolean queries with minimum match
- Phrase queries with slop
- Query rewriting and optimization
- Query expansion
- Prefix matching (e.g.,
web:*
) - Complex boolean expressions with parentheses
- Result ranking with
ts_rank
- Text highlighting with
ts_headline
-
Faceted Search
- Hierarchical facets
- Dynamic facet counting
- Custom facet ordering
- Multi-value facets
-
Enhanced Scoring & Ranking
- Configurable scoring algorithms
- Score explanation
- Custom boosting factors
- Field-weight customization
- Position-based scoring
-
Search Quality
- Highlighting with snippets
- Relevance tuning tools
- Search quality metrics
-
Vector Data Types and Operations
- VECTOR(dimensions) data type
- Vector similarity operators (<->, <=>, <#>)
- Configurable distance metrics (L2, Cosine, Dot Product)
- Vector normalization options
-
Dimension-Optimized Indexes
- KD-Tree for low dimensions (≤ 8)
- HNSW for medium dimensions (≤ 100)
- Brute Force with SIMD for high dimensions
- Index selection based on dimensionality
-
Advanced Vector Search Features
- Approximate Nearest Neighbors (ANN)
- Hybrid search (combine with text/filters)
- Batch vector operations
- Vector quantization
- Dynamic index rebuilding
- Multi-vector queries
-
Vector Search Optimizations
- SIMD acceleration
- Parallel search
- Memory-mapped vectors
- Vector compression
- Incremental index updates
- Cache-friendly layouts
- Plan caching
- Adaptive query execution
- Runtime statistics collection
- Dynamic plan adjustment
- Materialized view suggestions
- UNIQUE constraints
- CHECK constraints
- NOT NULL constraints
- DEFAULT values
- Enhanced FOREIGN KEY support with ON DELETE/UPDATE actions
- Views
- Stored procedures
- User-defined functions
- Triggers
- Materialized views
- Character-based tokenization
- N-gram tokenization
- Dictionary-based word segmentation
- Language-specific stop words
- Unicode normalization
- Ideograph handling
- Reading/pronunciation support
- Pinyin for Chinese
- Hiragana/Katakana for Japanese
- Hangul/Hanja for Korean
- Mixed script handling
- CJK-specific scoring adjustments
- Compound word processing
- Character variant normalization
- DATE and TIME types
- DECIMAL/NUMERIC types
- BOOLEAN type
- BLOB/BINARY types
- Array types
- JSON type
- User-defined types
- User authentication
- Role-based authorization
- Row-level security
- Column-level security
- Audit logging
- SSL/TLS support
- Replication using raft-rs
- Master-slave configuration
- Sharding support
- Distributed transactions
- Failover support
- Command-line interface
- Web-based admin interface
- Query visualization
- Performance monitoring dashboard
- Schema visualization
- Comprehensive documentation
This project is licensed under the MIT License. See LICENSE for more information.