Run ln -s /PATH/TO/ALL/DATASETS/ ./data/
This will create a data folder with symbolic link to the dataset directory that you point to.
Do the same for outputs in /l/users/SOMEWHERE/ to ./output
Copy weights from here . Runs with python 3.8 and pytorch 1.11.0.
Run python train.py --dataset_name DATASET_NAME --resume PATH/TO/SAVED/WEIGHTS --eval
DATSET_NAMEs are: air, air+car, foodx for FGVC aircrafts, Aircrafts+Stanford Cars combined and Food101 respectively.
CUB_200_2011 (CUB) - http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
Stanford Cars (CAR) - https://ai.stanford.edu/~jkrause/cars/car_dataset.html
FGVC-Aircraft (AIR) - https://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/
Unzip benchmarks to "../Data/" (update the variable "data_config" in train.py if necessary).
We train the model with 4 V100. The valid batch size is 16*4=64.
python train.py@article{p2pnet2022,
title={Fine-Grained Object Classification via Self-Supervised Pose Alignment},
author={Xuhui Yang, Yaowei Wang, Ke Chen, Yong Xu, Yonghong Tian},
journal={arXiv preprint arXiv:2203.15987},
year={2022},
}
This work is supported by the China Postdoctoral Science Foundation (2021M691682), the National Natural Science Foundation of China (61902131, 62072188, U20B2052), the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (2017ZT07X183), and the Project of Peng Cheng Laboratory (PCL2021A07).

