Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 8 additions & 8 deletions bin/calc_splizvd.py
Original file line number Diff line number Diff line change
Expand Up @@ -231,17 +231,17 @@ def main():
split_dict = {True : ["ann"], False : ["unann"]}

# remove constitutive splicing
df["posA_group"] = df["juncStart"].astype(str) + df["gene"]
df["posB_group"] = df["juncEnd"].astype(str) + df["gene"]
df["posStart_group"] = df["juncStart"].astype(str) + df["gene"]
df["posEnd_group"] = df["juncEnd"].astype(str) + df["gene"]

df["rank_acc"] = df.groupby("posA_group")["juncEnd"].rank(method="dense")
df["rank_don"] = df.groupby("posB_group")["juncStart"].rank(method="dense")
df["rank_acc"] = df.groupby("posStart_group")["juncEnd"].rank(method="dense")
df["rank_don"] = df.groupby("posEnd_group")["juncStart"].rank(method="dense")
# remove "almost consistutive splicing"
if args.rank_quant > 0:
let_dict2 = {"A" : "acc", "B" : "don"}
let_dict2 = {"Start" : "acc", "End" : "don"}

# threshold ranks for each donor and acceptor
for let in ["A","B"]:
for let in ["Start","End"]:
df["bottom_{}_quant".format(let_dict2[let])] = df["pos{}_group".format(let)].map(df.groupby("pos{}_group".format(let))["rank_{}".format(let_dict2[let])].quantile(q=args.rank_quant))
df["top_{}_quant".format(let_dict2[let])] = df["pos{}_group".format(let)].map(df.groupby("pos{}_group".format(let))["rank_{}".format(let_dict2[let])].quantile(q=1 - args.rank_quant))
df["rank_{}".format(let_dict2[let])] = df[["bottom_{}_quant".format(let_dict2[let]),"rank_{}".format(let_dict2[let])]].max(axis=1)
Expand All @@ -250,8 +250,8 @@ def main():
# start ranks at 1 (in case 1 is removed by quantiling)
df["rank_{}".format(let_dict2[let])] = df["rank_{}".format(let_dict2[let])] - df["bottom_{}_quant".format(let_dict2[let])] + 1

df["max_rank_acc"] = df["posA_group"].map(df.groupby("posA_group")["rank_acc"].max())
df["max_rank_don"] = df["posB_group"].map(df.groupby("posB_group")["rank_don"].max())
df["max_rank_acc"] = df["posStart_group"].map(df.groupby("posStart_group")["rank_acc"].max())
df["max_rank_don"] = df["posEnd_group"].map(df.groupby("posEnd_group")["rank_don"].max())

# add domain columns
letters = ["Start", "End"]
Expand Down