Skip to content

sauravpanda/BrowserAI

Repository files navigation

BrowserAI πŸš€

Run Production-Ready LLMs Directly in Your Browser

Simple β€’ Fast β€’ Private β€’ Open Source

Live Demo β€’ Documentation β€’ Discord Community

BrowserAI Demo

🌟 Live Demos

Demo Description Try It
Chat Multi-model chat interface chat.browserai.dev
Voice Chat Full-featured with speech recognition & TTS voice-demo.browserai.dev
Text-to-Speech Powered by Kokoro 82M tts-demo.browserai.dev

⚑ Key Features

  • πŸ”’ 100% Private: All processing happens locally in your browser
  • πŸš€ WebGPU Accelerated: Near-native performance
  • πŸ’° Zero Server Costs: No complex infrastructure needed
  • 🌐 Offline Capable: Works without internet after initial download
  • 🎯 Developer Friendly: Simple sdk with multiple engine support
  • πŸ“¦ Production Ready: Pre-optimized popular models

🎯 Perfect For

  • Web developers building AI-powered applications
  • Companies needing privacy-conscious AI solutions
  • Researchers experimenting with browser-based AI
  • Hobbyists exploring AI without infrastructure overhead

✨ Features

  • 🎯 Run AI models directly in the browser - no server required!
  • ⚑ WebGPU acceleration for blazing fast inference
  • πŸ”„ Seamless switching between MLC and Transformers engines
  • πŸ“¦ Pre-configured popular models ready to use
  • πŸ› οΈ Easy-to-use API for text generation and more

πŸš€ Quick Start

npm install @browserai/browserai

OR

yarn add @browserai/browserai

Basic Usage

import { BrowserAI } from '@browserai/browserai';

const browserAI = new BrowserAI();

browserAI.loadModel('llama-3.2-1b-instruct');

const response = await browserAI.generateText('Hello, how are you?');
console.log(response);

πŸ“š Examples

Text Generation with Custom Parameters

const ai = new BrowserAI();
await ai.loadModel('llama-3.2-1b-instruct', {
  quantization: 'q4f16_1' // Optimize for size/speed
});

const response = await ai.generateText('Write a short poem about coding', {
  temperature: 0.8,
  maxTokens: 100
});

Chat with System Prompt

const ai = new BrowserAI();
await ai.loadModel('gemma-2b-it');

const response = await ai.generateText([
  { role: 'system', content: 'You are a helpful assistant.' },
  { role: 'user', content: 'What is WebGPU?' }
]);

Speech Recognition

const ai = new BrowserAI();
await ai.loadModel('whisper-tiny-en');

// Using the built-in recorder
await ai.startRecording();
const audioBlob = await ai.stopRecording();
const transcription = await ai.transcribeAudio(audioBlob);

Text-to-Speech

const ai = new BrowserAI();
await ai.loadModel('kokoro-tts');
const audioBuffer = await ai.textToSpeech('Hello, how are you today?');
// Play the audio using Web Audio API
const audioContext = new AudioContext();
const source = audioContext.createBufferSource();
audioContext.decodeAudioData(audioBuffer, (buffer) => {
  source.buffer = buffer;
  source.connect(audioContext.destination);
  source.start(0);
});

πŸ”§ Supported Models

More models will be added soon. Request a model by creating an issue.

MLC Models

  • Llama-3.2-1b-Instruct
  • SmolLM2-135M-Instruct
  • SmolLM2-360M-Instruct
  • SmolLM2-1.7B-Instruct
  • Qwen-0.5B-Instruct
  • Gemma-2B-IT
  • TinyLlama-1.1B-Chat-v0.4
  • Phi-3.5-mini-instruct
  • Qwen2.5-1.5B-Instruct

Transformers Models

  • Llama-3.2-1b-Instruct
  • Whisper-tiny-en (Speech Recognition)
  • Kokoro-TTS (Text-to-Speech)

πŸ—ΊοΈ Enhanced Roadmap

Phase 1: Foundation

  • 🎯 Simplified model initialization
  • πŸ“Š Basic monitoring and metrics
  • πŸ” Simple RAG implementation
  • πŸ› οΈ Developer tools integration

Phase 2: Advanced Features

  • πŸ“š Enhanced RAG capabilities
    • Hybrid search
    • Auto-chunking
    • Source tracking
  • πŸ“Š Advanced observability
    • Performance dashboards
    • Memory profiling
    • Error tracking

Phase 3: Enterprise Features

  • πŸ” Security features
  • πŸ“ˆ Advanced analytics
  • 🀝 Multi-model orchestration

🀝 Contributing

We welcome contributions! Feel free to:

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

πŸ™ Acknowledgments

  • MLC AI for their incredible mode compilation library and support for webgpu runtime and xgrammar
  • Hugging Face and Xenova for their Transformers.js library, licensed under Apache License 2.0. The original code has been modified to work in a browser environment and converted to TypeScript.
  • All our contributors and supporters!

Made with ❀️ for the AI community

πŸš€ Requirements

  • Modern browser with WebGPU support (Chrome 113+, Edge 113+, or equivalent)
  • For models with shader-f16 requirement, hardware must support 16-bit floating point operations