A hands-on journey through Pandas, diving deep into data cleaning, manipulation, transformation, and analysis — the core of data science with Python.
This repository serves as my personal Pandas Lab 🧪 — where I explore, clean, and transform data using the Pandas library.
Each notebook represents a step in mastering data manipulation, aggregation, indexing, and visualization, laying a strong foundation for advanced analytics and machine learning.
💡 Each notebook inside the
Pandasfolder explores a unique concept of Pandas — from fundamental data structures to real-world data analysis.
pandas-lab/
│
└── Pandas/
├── Series/
│ ├── Pandas_Series-checkpoint.ipynb
│ ├── Series_Maths_Methods_and_Indexing-checkpoint.ipynb
│ ├── Series_Methods-checkpoint.ipynb
│ ├── Boolean_indexing_on_series-checkpoint.ipynb
│ ├── Series_with_Python_Functionalities-checkpoint.ipynb
│ ├── Editing_Series-checkpoint.ipynb
│ ├── Series_Using_read_CSV-checkpoint.ipynb
│ ├── Plotting_graphs_on_series-checkpoint.ipynb
│ ├── bollywood-checkpoint.csv
│ └── subs-checkpoint.csv
├── DataFrame/
│ ├── DataFrame_Creation.ipynb
│ ├── DataFrame_Functions.ipynb
│ ├── DataFrame_Attributes_And_Methods.ipynb
│ ├── Filtering_a_DataFrame.ipynb
│ ├── Adding_New_Cols.ipynb
│ ├── Selecting_rows_&_columns_from_a_dataFrame.ipynb
│ ├── batsman_runs_ipl.csv
│ ├── diabetes.csv
│ ├── ipl-matches.csv
│ └── movies.csv
| Notebook | Description |
|---|---|
| Pandas_Series | Introduction to Pandas Series and its core structure |
| Series_Maths_Methods_and_Indexing | Performing mathematical operations and exploring indexing |
| Series_Methods | Exploring built-in Series methods for data manipulation |
| Boolean_indexing_on_series | Filtering data with conditional selections |
| Series_with_Python_Functionalities | Integrating Series with Python’s native functions |
| Editing_Series | Modifying Series values and structure efficiently |
| Series_Using_read_CSV | Creating Series directly from CSV files |
| Plotting_graphs_on_series | Visualizing Series data using Pandas’ built-in plotting |
| bollywood.csv / subs.csv | Datasets used for hands-on analysis and visualization |
| Notebook | Description |
|---|---|
| DataFrame_Creation | Creating DataFrames from dictionaries, lists, and CSV files |
| DataFrame_Functions | Applying essential DataFrame functions for data transformation |
| DataFrame_Attributes_And_Methods | Understanding DataFrame properties, info, and key methods |
| Filtering_a_DataFrame | Selecting data using conditional filtering and logical operations |
| Adding_New_Cols | Creating and modifying columns dynamically |
| Selecting_rows_&_columns_from_a_dataFrame | Accessing rows and columns using loc, iloc, and label-based indexing |
| batsman_runs_ipl.csv / diabetes.csv / ipl-matches.csv / movies.csv | Real-world datasets for hands-on practice and exploration |
- 🔹 Pandas Official Docs
- 🔹 Pandas Series Lecture by CampusX
- 🔹 Important Series Methods Lecture by CampusX
- Python 3.x
- Pandas
- NumPy
- Jupyter Notebook
Shafaq Aslam
📍 Passionate learner exploring Data Analytics, Machine Learning, and AI through consistent hands-on practice.
pandas python data-analysis data-cleaning data-visualization dataframe series machine-learning data-science jupyter-notebooks learning-lab
“Turning raw data into meaningful insights — one DataFrame at a time.”