Skip to content

refactor: Simplifies VectorStoreChatMemoryAdvisor code #3773

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,10 @@
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.stream.Collectors;

import org.springframework.ai.chat.messages.SystemMessage;
import org.springframework.ai.vectorstore.SearchRequest;
import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;
import reactor.core.scheduler.Scheduler;
Expand Down Expand Up @@ -122,31 +125,31 @@ public ChatClientRequest before(ChatClientRequest request, AdvisorChain advisorC
String query = request.prompt().getUserMessage() != null ? request.prompt().getUserMessage().getText() : "";
int topK = getChatMemoryTopK(request.context());
String filter = DOCUMENT_METADATA_CONVERSATION_ID + "=='" + conversationId + "'";
var searchRequest = org.springframework.ai.vectorstore.SearchRequest.builder()
SearchRequest searchRequest = SearchRequest.builder()
.query(query)
.topK(topK)
.filterExpression(filter)
.build();
java.util.List<org.springframework.ai.document.Document> documents = this.vectorStore
List<Document> documents = this.vectorStore
.similaritySearch(searchRequest);

String longTermMemory = documents == null ? ""
: documents.stream()
.map(org.springframework.ai.document.Document::getText)
.collect(java.util.stream.Collectors.joining(System.lineSeparator()));
.map(Document::getText)
.collect(Collectors.joining(System.lineSeparator()));

org.springframework.ai.chat.messages.SystemMessage systemMessage = request.prompt().getSystemMessage();
SystemMessage systemMessage = request.prompt().getSystemMessage();
String augmentedSystemText = this.systemPromptTemplate
.render(java.util.Map.of("instructions", systemMessage.getText(), "long_term_memory", longTermMemory));
.render(Map.of("instructions", systemMessage.getText(), "long_term_memory", longTermMemory));

ChatClientRequest processedChatClientRequest = request.mutate()
.prompt(request.prompt().augmentSystemMessage(augmentedSystemText))
.build();

org.springframework.ai.chat.messages.UserMessage userMessage = processedChatClientRequest.prompt()
.getUserMessage();
UserMessage userMessage = processedChatClientRequest.prompt()
.getUserMessage();
if (userMessage != null) {
this.vectorStore.write(toDocuments(java.util.List.of(userMessage), conversationId));
this.vectorStore.write(toDocuments(List.of(userMessage), conversationId));
}

return processedChatClientRequest;
Expand Down Expand Up @@ -186,10 +189,10 @@ public Flux<ChatClientResponse> adviseStream(ChatClientRequest chatClientRequest
}

private List<Document> toDocuments(List<Message> messages, String conversationId) {
List<Document> docs = messages.stream()
return messages.stream()
.filter(m -> m.getMessageType() == MessageType.USER || m.getMessageType() == MessageType.ASSISTANT)
.map(message -> {
var metadata = new HashMap<>(message.getMetadata() != null ? message.getMetadata() : new HashMap<>());
Map<String, Object> metadata = new HashMap<>(message.getMetadata() != null ? message.getMetadata() : new HashMap<>());
metadata.put(DOCUMENT_METADATA_CONVERSATION_ID, conversationId);
metadata.put(DOCUMENT_METADATA_MESSAGE_TYPE, message.getMessageType().name());
if (message instanceof UserMessage userMessage) {
Expand All @@ -201,15 +204,12 @@ private List<Document> toDocuments(List<Message> messages, String conversationId
// .media(userMessage.getMedia())
.metadata(metadata)
.build();
}
else if (message instanceof AssistantMessage assistantMessage) {
} else if (message instanceof AssistantMessage assistantMessage) {
return Document.builder().text(assistantMessage.getText()).metadata(metadata).build();
}
throw new RuntimeException("Unknown message type: " + message.getMessageType());
})
.toList();

return docs;
}

/**
Expand Down