Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
This PR contains the following updates:
2.28-251.el8_10.16
->2.28-251.el8_10.22
2.28-251.el8_10.16
->2.28-251.el8_10.22
2.28-251.el8_10.16
->2.28-251.el8_10.22
2.28-251.el8_10.16
->2.28-251.el8_10.22
2.28-251.el8_10.16
->2.28-251.el8_10.22
2.28-251.el8_10.16
->2.28-251.el8_10.22
4.18.0-553.54.1.el8_10
->4.18.0-553.58.1.el8_10
2.9.7-19.el8_10
->2.9.7-20.el8_10
2:1.30-9.el8
->2:1.30-10.el8_10
glibc: static setuid binary dlopen may incorrectly search LD_LIBRARY_PATH
CVE-2025-4802
More information
Details
A flaw was found in the glibc library. A statically linked setuid binary that calls dlopen(), including internal dlopen() calls after setlocale() or calls to NSS functions such as getaddrinfo(), may incorrectly search LD_LIBRARY_PATH to determine which library to load, allowing a local attacker to load malicious shared libraries, escalate privileges and execute arbitrary code.
Severity
Moderate
References
glibc: buffer overflow in the GNU C Library's assert()
CVE-2025-0395
More information
Details
A flaw was found in the GNU C Library (glibc). A buffer overflow condition via the
assert()
function may be triggered due to glibc not allocating enough space for the assertion failure message string and size information. In certain conditions, a local attacker can exploit this, potentially leading to an application crash or other undefined behavior.Severity
Moderate
References
kernel: um: Fix out-of-bounds read in LDT setup
CVE-2022-49395
More information
Details
A vulnerability was found in the Linux kernel's user mode (um) subsystem, specifically within the Local Descriptor Table (LDT) setup functionality. The issue arises from the syscall_stub_data() function misinterpreting the data_count parameter as a byte count rather than a count of longs, leading to an out-of-bounds read. This flaw could expose sensitive kernel memory and cause system instability.
Severity
Moderate
References
kernel: cifs: fix double free race when mount fails in cifs_get_root()
CVE-2022-48919
More information
Details
In the Linux kernel, the following vulnerability has been resolved:
cifs: fix double free race when mount fails in cifs_get_root()
When cifs_get_root() fails during cifs_smb3_do_mount() we call
deactivate_locked_super() which eventually will call delayed_free() which
will free the context.
In this situation we should not proceed to enter the out: section in
cifs_smb3_do_mount() and free the same resources a second time.
[Thu Feb 10 12:59:06 2022] BUG: KASAN: use-after-free in rcu_cblist_dequeue+0x32/0x60
[Thu Feb 10 12:59:06 2022] Read of size 8 at addr ffff888364f4d110 by task swapper/1/0
[Thu Feb 10 12:59:06 2022] CPU: 1 PID: 0 Comm: swapper/1 Tainted: G OE 5.17.0-rc3+ #4
[Thu Feb 10 12:59:06 2022] Hardware name: Microsoft Corporation Virtual Machine/Virtual Machine, BIOS Hyper-V UEFI Release v4.0 12/17/2019
[Thu Feb 10 12:59:06 2022] Call Trace:
[Thu Feb 10 12:59:06 2022]
[Thu Feb 10 12:59:06 2022] dump_stack_lvl+0x5d/0x78
[Thu Feb 10 12:59:06 2022] print_address_description.constprop.0+0x24/0x150
[Thu Feb 10 12:59:06 2022] ? rcu_cblist_dequeue+0x32/0x60
[Thu Feb 10 12:59:06 2022] kasan_report.cold+0x7d/0x117
[Thu Feb 10 12:59:06 2022] ? rcu_cblist_dequeue+0x32/0x60
[Thu Feb 10 12:59:06 2022] __asan_load8+0x86/0xa0
[Thu Feb 10 12:59:06 2022] rcu_cblist_dequeue+0x32/0x60
[Thu Feb 10 12:59:06 2022] rcu_core+0x547/0xca0
[Thu Feb 10 12:59:06 2022] ? call_rcu+0x3c0/0x3c0
[Thu Feb 10 12:59:06 2022] ? __this_cpu_preempt_check+0x13/0x20
[Thu Feb 10 12:59:06 2022] ? lock_is_held_type+0xea/0x140
[Thu Feb 10 12:59:06 2022] rcu_core_si+0xe/0x10
[Thu Feb 10 12:59:06 2022] __do_softirq+0x1d4/0x67b
[Thu Feb 10 12:59:06 2022] __irq_exit_rcu+0x100/0x150
[Thu Feb 10 12:59:06 2022] irq_exit_rcu+0xe/0x30
[Thu Feb 10 12:59:06 2022] sysvec_hyperv_stimer0+0x9d/0xc0
...
[Thu Feb 10 12:59:07 2022] Freed by task 58179:
[Thu Feb 10 12:59:07 2022] kasan_save_stack+0x26/0x50
[Thu Feb 10 12:59:07 2022] kasan_set_track+0x25/0x30
[Thu Feb 10 12:59:07 2022] kasan_set_free_info+0x24/0x40
[Thu Feb 10 12:59:07 2022] ____kasan_slab_free+0x137/0x170
[Thu Feb 10 12:59:07 2022] __kasan_slab_free+0x12/0x20
[Thu Feb 10 12:59:07 2022] slab_free_freelist_hook+0xb3/0x1d0
[Thu Feb 10 12:59:07 2022] kfree+0xcd/0x520
[Thu Feb 10 12:59:07 2022] cifs_smb3_do_mount+0x149/0xbe0 [cifs]
[Thu Feb 10 12:59:07 2022] smb3_get_tree+0x1a0/0x2e0 [cifs]
[Thu Feb 10 12:59:07 2022] vfs_get_tree+0x52/0x140
[Thu Feb 10 12:59:07 2022] path_mount+0x635/0x10c0
[Thu Feb 10 12:59:07 2022] __x64_sys_mount+0x1bf/0x210
[Thu Feb 10 12:59:07 2022] do_syscall_64+0x5c/0xc0
[Thu Feb 10 12:59:07 2022] entry_SYSCALL_64_after_hwframe+0x44/0xae
[Thu Feb 10 12:59:07 2022] Last potentially related work creation:
[Thu Feb 10 12:59:07 2022] kasan_save_stack+0x26/0x50
[Thu Feb 10 12:59:07 2022] __kasan_record_aux_stack+0xb6/0xc0
[Thu Feb 10 12:59:07 2022] kasan_record_aux_stack_noalloc+0xb/0x10
[Thu Feb 10 12:59:07 2022] call_rcu+0x76/0x3c0
[Thu Feb 10 12:59:07 2022] cifs_umount+0xce/0xe0 [cifs]
[Thu Feb 10 12:59:07 2022] cifs_kill_sb+0xc8/0xe0 [cifs]
[Thu Feb 10 12:59:07 2022] deactivate_locked_super+0x5d/0xd0
[Thu Feb 10 12:59:07 2022] cifs_smb3_do_mount+0xab9/0xbe0 [cifs]
[Thu Feb 10 12:59:07 2022] smb3_get_tree+0x1a0/0x2e0 [cifs]
[Thu Feb 10 12:59:07 2022] vfs_get_tree+0x52/0x140
[Thu Feb 10 12:59:07 2022] path_mount+0x635/0x10c0
[Thu Feb 10 12:59:07 2022] __x64_sys_mount+0x1bf/0x210
[Thu Feb 10 12:59:07 2022] do_syscall_64+0x5c/0xc0
[Thu Feb 10 12:59:07 2022] entry_SYSCALL_64_after_hwframe+0x44/0xae
Severity
Moderate
References
kernel: security/keys: fix slab-out-of-bounds in key_task_permission
CVE-2024-50301
More information
Details
In the Linux kernel, the following vulnerability has been resolved:
security/keys: fix slab-out-of-bounds in key_task_permission
KASAN reports an out of bounds read:
BUG: KASAN: slab-out-of-bounds in __kuid_val include/linux/uidgid.h:36
BUG: KASAN: slab-out-of-bounds in uid_eq include/linux/uidgid.h:63 [inline]
BUG: KASAN: slab-out-of-bounds in key_task_permission+0x394/0x410
security/keys/permission.c:54
Read of size 4 at addr ffff88813c3ab618 by task stress-ng/4362
CPU: 2 PID: 4362 Comm: stress-ng Not tainted 5.10.0-14930-gafbffd6c3ede #15
Call Trace:
__dump_stack lib/dump_stack.c:82 [inline]
dump_stack+0x107/0x167 lib/dump_stack.c:123
print_address_description.constprop.0+0x19/0x170 mm/kasan/report.c:400
__kasan_report.cold+0x6c/0x84 mm/kasan/report.c:560
kasan_report+0x3a/0x50 mm/kasan/report.c:585
__kuid_val include/linux/uidgid.h:36 [inline]
uid_eq include/linux/uidgid.h:63 [inline]
key_task_permission+0x394/0x410 security/keys/permission.c:54
search_nested_keyrings+0x90e/0xe90 security/keys/keyring.c:793
This issue was also reported by syzbot.
It can be reproduced by following these steps(more details [1]):
pattern '0xxxxxxxe6'.
The reproducer demonstrates how this issue happened:
In the search_nested_keyrings function, when it iterates through the
slots in a node(below tag ascend_to_node), if the slot pointer is meta
and node->back_pointer != NULL(it means a root), it will proceed to
descend_to_node. However, there is an exception. If node is the root,
and one of the slots points to a shortcut, it will be treated as a
keyring.
Whether the ptr is keyring decided by keyring_ptr_is_keyring function.
However, KEYRING_PTR_SUBTYPE is 0x2UL, the same as
ASSOC_ARRAY_PTR_SUBTYPE_MASK.
When 32 keys with the similar hashes are added to the tree, the ROOT
has keys with hashes that are not similar (e.g. slot 0) and it splits
NODE A without using a shortcut. When NODE A is filled with keys that
all hashes are xxe6, the keys are similar, NODE A will split with a
shortcut. Finally, it forms the tree as shown below, where slot 6 points
to a shortcut.
ROOT | | 0 | xxe6
+---+ | +---+
xxxx | 0 | shortcut : : xxe6
+---+ | +---+
xxe6 : : | | | xxe6
+---+ | +---+
| 6 |---+ : : xxe6
+---+ +---+
xxe6 : : | f | xxe6
+---+ +---+
xxe6 | f |
+---+
As mentioned above, If a slot(slot 6) of the root points to a shortcut,
it may be mistakenly transferred to a key*, leading to a read
out-of-bounds read.
To fix this issue, one should jump to descend_to_node if the ptr is a
shortcut, regardless of whether the node is root or not.
[1] https://lore.kernel.org/linux-kernel/1cfa878e-8c7b-4570-8606-21daf5e13ce7@​huaweicloud.com/
[jarkko: tweaked the commit message a bit to have an appropriate closes
tag.]
Severity
Moderate
References
kernel: idpf: fix idpf_vc_core_init error path
CVE-2024-53064
More information
Details
In the Linux kernel, the following vulnerability has been resolved:
idpf: fix idpf_vc_core_init error path
In an event where the platform running the device control plane
is rebooted, reset is detected on the driver. It releases
all the resources and waits for the reset to complete. Once the
reset is done, it tries to build the resources back. At this
time if the device control plane is not yet started, then
the driver timeouts on the virtchnl message and retries to
establish the mailbox again.
In the retry flow, mailbox is deinitialized but the mailbox
workqueue is still alive and polling for the mailbox message.
This results in accessing the released control queue leading to
null-ptr-deref. Fix it by unrolling the work queue cancellation
and mailbox deinitialization in the reverse order which they got
initialized.
Severity
Moderate
References
kernel: ndisc: use RCU protection in ndisc_alloc_skb()
CVE-2025-21764
More information
Details
A vulnerability was found in the Linux kernel's IPv6 Neighbor Discovery (NDISC) subsystem, which manages network neighbor information. The issue arises from improper synchronization mechanisms when allocating socket buffers (sk_buff) in the ndisc_alloc_skb() function. Specifically, the function can be called without holding the necessary Read-Copy-Update (RCU) or Routing Netlink (RTNL) locks, leading to a potential use-after-free (UAF) condition. This flaw allows an attacker with local access and low privileges to exploit the race condition, potentially causing system instability or crashes.
Severity
Moderate
References
kernel: HID: core: zero-initialize the report buffer
CVE-2024-50302
More information
Details
A vulnerability was found in the Linux kernel's driver for Human Interface Devices. This flaw allows an attacker to use a malicious input device to read information from the report buffer. This could be used to leak kernel memory, enabling the exploitation of additional vulnerabilities.
Severity
Important
References
kernel: ALSA: usb-audio: Fix potential out-of-bound accesses for Extigy and Mbox devices
CVE-2024-53197
More information
Details
A vulnerability was found in the Linux kernel's USB Audio driver. This flaw allows an attacker with physical access to the system to use a malicious USB device to gain additional access. This is possible by manipulating system memory, potentially escalating privileges, or executing arbitrary code.
Severity
Important
References
kernel: can: bcm: Fix UAF in bcm_proc_show()
CVE-2023-52922
More information
Details
In the Linux kernel, the following vulnerability has been resolved:
can: bcm: Fix UAF in bcm_proc_show()
BUG: KASAN: slab-use-after-free in bcm_proc_show+0x969/0xa80
Read of size 8 at addr ffff888155846230 by task cat/7862
CPU: 1 PID: 7862 Comm: cat Not tainted 6.5.0-rc1-00153-gc8746099c197 #230
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
Call Trace:
dump_stack_lvl+0xd5/0x150
print_report+0xc1/0x5e0
kasan_report+0xba/0xf0
bcm_proc_show+0x969/0xa80
seq_read_iter+0x4f6/0x1260
seq_read+0x165/0x210
proc_reg_read+0x227/0x300
vfs_read+0x1d5/0x8d0
ksys_read+0x11e/0x240
do_syscall_64+0x35/0xb0
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Allocated by task 7846:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
__kasan_kmalloc+0x9e/0xa0
bcm_sendmsg+0x264b/0x44e0
sock_sendmsg+0xda/0x180
____sys_sendmsg+0x735/0x920
___sys_sendmsg+0x11d/0x1b0
__sys_sendmsg+0xfa/0x1d0
do_syscall_64+0x35/0xb0
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Freed by task 7846:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
kasan_save_free_info+0x27/0x40
____kasan_slab_free+0x161/0x1c0
slab_free_freelist_hook+0x119/0x220
__kmem_cache_free+0xb4/0x2e0
rcu_core+0x809/0x1bd0
bcm_op is freed before procfs entry be removed in bcm_release(),
this lead to bcm_proc_show() may read the freed bcm_op.
Severity
Important
References
kernel: arm64: cacheinfo: Avoid out-of-bounds write to cacheinfo array
CVE-2025-21785
More information
Details
In the Linux kernel, the following vulnerability has been resolved:
arm64: cacheinfo: Avoid out-of-bounds write to cacheinfo array
The loop that detects/populates cache information already has a bounds
check on the array size but does not account for cache levels with
separate data/instructions cache. Fix this by incrementing the index
for any populated leaf (instead of any populated level).
Severity
Important
References
kernel: ALSA: usb-audio: Fix out of bounds reads when finding clock sources
CVE-2024-53150
More information
Details
A vulnerability was found in the Linux kernel's USB Audio driver. This flaw can allow an attacker with physical access to the system to use a malicious USB device to gain additional access. This is possible by reading arbitrary system memory.
Severity
Important
References
kernel: cifs: fix potential double free during failed mount
CVE-2022-49541
More information
Details
In the Linux kernel, the following vulnerability has been resolved:
cifs: fix potential double free during failed mount
RHBZ: https://bugzilla.redhat.com/show_bug.cgi?id=2088799
Severity
Important
References
kernel: nvme-tcp: fix potential memory corruption in nvme_tcp_recv_pdu()
CVE-2025-21927
More information
Details
In the Linux kernel, the following vulnerability has been resolved:
nvme-tcp: fix potential memory corruption in nvme_tcp_recv_pdu()
nvme_tcp_recv_pdu() doesn't check the validity of the header length.
When header digests are enabled, a target might send a packet with an
invalid header length (e.g. 255), causing nvme_tcp_verify_hdgst()
to access memory outside the allocated area and cause memory corruptions
by overwriting it with the calculated digest.
Fix this by rejecting packets with an unexpected header length.
Severity
Important
References
kernel: vsock: Keep the binding until socket destruction
CVE-2025-21756
More information
Details
A flaw was found in the Linux kernel's virtual socket protocol network driver, where an improperly timed socket unbinding could result in a use-after-free issue. This flaw allows an attacker who can create and destroy arbitrary connections on virtual connections to read or modify system memory, potentially leading to an escalation of privileges or the compromise of sensitive data.
Severity
Important
References
kernel: netfilter: ipset: add missing range check in bitmap_ip_uadt
CVE-2024-53141
More information
Details
In the Linux kernel, the following vulnerability has been resolved:
netfilter: ipset: add missing range check in bitmap_ip_uadt
When tb[IPSET_ATTR_IP_TO] is not present but tb[IPSET_ATTR_CIDR] exists,
the values of ip and ip_to are slightly swapped. Therefore, the range check
for ip should be done later, but this part is missing and it seems that the
vulnerability occurs.
So we should add missing range checks and remove unnecessary range checks.
Severity
Important
References
kernel: tipc: fix use-after-free Read in tipc_named_reinit
CVE-2022-49696
More information
Details
A vulnerability was found in the Linux kernel's Transparent Inter-Process Communication (TIPC) subsystem, allowing a use-after-free condition during the cleanup process. This issue arises when the kernel's work queue mechanism does not properly synchronize the destruction of TIPC namespaces with the completion of pending work items.
Specifically, the function responsible for canceling pending work (cancel_work_sync()) ensures that a particular work item (tipc_net_finalize_work) is completed before the namespace is destroyed. However, it does not guarantee that this work item is the last one queued, leading to the possibility of accessing freed memory if additional work is enqueued afterward.
Severity
Moderate
References
kernel: mt76: fix use-after-free by removing a non-RCU wcid pointer
CVE-2022-49328
More information
Details
A vulnerability was found in the Linux kernel's mt76 wi-fi driver. A concurrency bug causes the
mtxq
TX queue to maintain a raw pointer to awcid
structure (mtxq->wcid
) that might be freed by the time it is accessed. This issue can lead to a use-after-free scenario, leading to system instability, memory corruption, and potentially arbitrary code execution.Severity
Moderate
References
podman: buildah: Container breakout by using --jobs=2 and a race condition when building a malicious Containerfile
CVE-2024-11218
More information
Details
A vulnerability was found in
podman build
andbuildah.
This issue occurs in a container breakout by using --jobs=2 and a race condition when building a malicious Containerfile. SELinux might mitigate it, but even with SELinux on, it still allows the enumeration of files and directories on the host.Severity
Important
References
kernel: ALSA: usb-audio: Fix out of bounds reads when finding clock sources
CVE-2024-53150
More information
Details
A vulnerability was found in the Linux kernel's USB Audio driver. This flaw can allow an attacker with physical access to the system to use a malicious USB device to gain additional access. This is possible by reading arbitrary system memory.
Severity
Moderate
References
kernel: vsock: Keep the binding until socket destruction
CVE-2025-21756
More information
Details
A flaw was found in the Linux kernel's virtual socket protocol network driver, where an improperly timed socket unbinding could result in a use-after-free issue. This flaw allows an attacker who can create and destroy arbitrary connections on virtual connections to read or modify system memory, potentially leading to an escalation of privileges or the compromise of sensitive data.
Severity
Moderate
References
kernel: mm: call the security_mmap_file() LSM hook in remap_file_pages()
CVE-2024-47745
More information
Details
A flaw was found in the remap_file_pages function in mm/mmap.c in the Linux kernel, where it does not properly restrict execute access. This vulnerability allows local users to bypass intended SELinux W^X policy restrictions.
Severity
Moderate
References
kernel: veth: Fix use after free in XDP_REDIRECT
CVE-2023-53107
More information
Details
A use-after-free vulnerability has been identified within the veth_convert_skb_to_xdp_buff() function of the Linux kernel's veth driver. The flaw stems from improper memory management during packet headroom expansion for XDP (eXpress Data Path). Specifically, when the pskb_expand_head() function allocates new memory via kmalloc to increase the packet headroom to meet the XDP_PACKET_HEADROOM requirement, a subsequent call to consume_skb() can prematurely free this memory while the AF_XDP subsystem is still actively processing the packet. This premature deallocation leads to a use-after-free condition. Successful exploitation of this vulnerability could result in memory corruption, denial of service, and overall system instability.
Severity
Important
References
kernel: tcp: defer shutdown(SEND_SHUTDOWN) for TCP_SYN_RECV sockets
CVE-2024-36905
More information
Details
In the Linux kernel, the following vulnerability has been resolved:
tcp: defer shutdown(SEND_SHUTDOWN) for TCP_SYN_RECV sockets
TCP_SYN_RECV state is really special, it is only used by
cross-syn connections, mostly used by fuzzers.
In the following crash [1], syzbot managed to trigger a divide
by zero in tcp_rcv_space_adjust()
A socket makes the following state transitions,
without ever calling tcp_init_transfer(),
meaning tcp_init_buffer_space() is also not called.
connect()
TCP_SYN_SENT
TCP_SYN_RECV
shutdown() -> tcp_shutdown(sk, SEND_SHUTDOWN)
TCP_FIN_WAIT1
To fix this issue, change tcp_shutdown() to not
perform a TCP_SYN_RECV -> TCP_FIN_WAIT1 transition,
which makes no sense anyway.
When tcp_rcv_state_process() later changes socket state
from TCP_SYN_RECV to TCP_ESTABLISH, then look at
sk->sk_shutdown to finally enter TCP_FIN_WAIT1 state,
and send a FIN packet from a sane socket state.
This means tcp_send_fin() can now be called from BH
context, and must use GFP_ATOMIC allocations.
[1]
divide error: 0000 [#1] PREEMPT SMP KASAN NOPTI
CPU: 1 PID: 5084 Comm: syz-executor358 Not tainted 6.9.0-rc6-syzkaller-00022-g98369dccd2f8 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024
RIP: 0010:tcp_rcv_space_adjust+0x2df/0x890 net/ipv4/tcp_input.c:767
Code: e3 04 4c 01 eb 48 8b 44 24 38 0f b6 04 10 84 c0 49 89 d5 0f 85 a5 03 00 00 41 8b 8e c8 09 00 00 89 e8 29 c8 48 0f af c3 31 d2 <48> f7 f1 48 8d 1c 43 49 8d 96 76 08 00 00 48 89 d0 48 c1 e8 03 48
RSP: 0018:ffffc900031ef3f0 EFLAGS: 00010246
RAX: 0c677a10441f8f42 RBX: 000000004fb95e7e RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: 0000000027d4b11f R08: ffffffff89e535a4 R09: 1ffffffff25e6ab7
R10: dffffc0000000000 R11: ffffffff8135e920 R12: ffff88802a9f8d30
R13: dffffc0000000000 R14: ffff88802a9f8d00 R15: 1ffff1100553f2da
FS: 00005555775c0380(0000) GS:ffff8880b9500000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f1155bf2304 CR3: 000000002b9f2000 CR4: 0000000000350ef0
Call Trace:
tcp_recvmsg_locked+0x106d/0x25a0 net/ipv4/tcp.c:2513
tcp_recvmsg+0x25d/0x920 net/ipv4/tcp.c:2578
inet6_recvmsg+0x16a/0x730 net/ipv6/af_inet6.c:680
sock_recvmsg_nosec net/socket.c:1046 [inline]
sock_recvmsg+0x109/0x280 net/socket.c:1068
____sys_recvmsg+0x1db/0x470 net/socket.c:2803
___sys_recvmsg net/socket.c:2845 [inline]
do_recvmmsg+0x474/0xae0 net/socket.c:2939
__sys_recvmmsg net/socket.c:3018 [inline]
__do_sys_recvmmsg net/socket.c:3041 [inline]
__se_sys_recvmmsg net/socket.c:3034 [inline]
__x64_sys_recvmmsg+0x199/0x250 net/socket.c:3034
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf5/0x240 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7faeb6363db9
Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 c1 17 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007ffcc1997168 EFLAGS: 00000246 ORIG_RAX: 000000000000012b
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007faeb6363db9
RDX: 0000000000000001 RSI: 0000000020000bc0 RDI: 0000000000000005
RBP: 0000000000000000 R08: 0000000000000000 R09: 000000000000001c
R10: 0000000000000122 R11: 0000000000000246 R12: 0000000000000000
R13: 0000000000000000 R14: 0000000000000001 R15: 0000000000000001
Severity
Moderate
References
kernel: net/mlx5e: Fix mlx5e_priv_init() cleanup flow
CVE-2024-35959
More information
Details
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Fix mlx5e_priv_init() cleanup flow
When mlx5e_priv_init() fails, the cleanup flow calls mlx5e_selq_cleanup which
calls mlx5e_selq_apply() that assures that the
priv->state_lock
is held usinglockdep_is_held().
Acquire the state_lock in mlx5e_selq_cleanup().
Kernel log:
WARNING: suspicious RCU usage
6.8.0-rc3_net_next_841a9b5 #1 Not tainted
drivers/net/ethernet/mellanox/mlx5/core/en/selq.c:124 suspicious rcu_dereference_protected() usage!
other info that might help us debug this:
rcu_scheduler_active = 2, debug_locks = 1
2 locks held by systemd-modules/293:
#0: ffffffffa05067b0 (devices_rwsem){++++}-{3:3}, at: ib_register_client+0x109/0x1b0 [ib_core]
#1: ffff8881096c65c0 (&device->client_data_rwsem){++++}-{3:3}, at: add_client_context+0x104/0x1c0 [ib_core]
stack backtrace:
CPU: 4 PID: 293 Comm: systemd-modules Not tainted 6.8.0-rc3_net_next_841a9b5 #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
Call Trace:
dump_stack_lvl+0x8a/0xa0
lockdep_rcu_suspicious+0x154/0x1a0
mlx5e_selq_apply+0x94/0xa0 [mlx5_core]
mlx5e_selq_cleanup+0x3a/0x60 [mlx5_core]
mlx5e_priv_init+0x2be/0x2f0 [mlx5_core]
mlx5_rdma_setup_rn+0x7c/0x1a0 [mlx5_core]
rdma_init_netdev+0x4e/0x80 [ib_core]
? mlx5_rdma_netdev_free+0x70/0x70 [mlx5_core]
ipoib_intf_init+0x64/0x550 [ib_ipoib]
ipoib_intf_alloc+0x4e/0xc0 [ib_ipoib]
ipoib_add_one+0xb0/0x360 [ib_ipoib]
add_client_context+0x112/0x1c0 [ib_core]
ib_register_client+0x166/0x1b0 [ib_core]
? 0xffffffffa0573000
ipoib_init_module+0xeb/0x1a0 [ib_ipoib]
do_one_initcall+0x61/0x250
do_init_module+0x8a/0x270
init_module_from_file+0x8b/0xd0
idempotent_init_module+0x17d/0x230
__x64_sys_finit_module+0x61/0xb0
do_syscall_64+0x71/0x140
entry_SYSCALL_64_after_hwframe+0x46/0x4e
Severity
Moderate
References
kernel: ext4: fix mb_cache_entry's e_refcnt leak in ext4_xattr_block_cache_find()
CVE-2024-39276
More information
Details
In the Linux kernel, the following vulnerability has been resolved:
ext4: fix mb_cache_entry's e_refcnt leak in ext4_xattr_block_cache_find()
Syzbot reports a warning as follows:
============================================
WARNING: CPU: 0 PID: 5075 at fs/mbcache.c:419 mb_cache_destroy+0x224/0x290
Modules linked in:
CPU: 0 PID: 5075 Comm: syz-executor199 Not tainted 6.9.0-rc6-gb947cc5bf6d7
RIP: 0010:mb_cache_destroy+0x224/0x290 fs/mbcache.c:419
Call Trace:
ext4_put_super+0x6d4/0xcd0 fs/ext4/super.c:1375
generic_shutdown_super+0x136/0x2d0 fs/super.c:641
kill_block_super+0x44/0x90 fs/super.c:1675
ext4_kill_sb+0x68/0xa0 fs/ext4/super.c:7327
[...]
This is because when finding an entry in ext4_xattr_block_cache_find(), if
ext4_sb_bread() returns -ENOMEM, the ce's e_refcnt, which has already grown
in the __entry_find(), won't be put away, and eventually trigger the above
issue in mb_cache_destroy() due to reference count leakage.
So call mb_cache_entry_put() on the -ENOMEM error branch as a quick fix.
Severity
Moderate
References
kernel: nvme-fc: do not wait in vain when unloading module
CVE-2024-26846
More information
Details
In the Linux kernel, the following vulnerability has been resolved:
nvme-fc: do not wait in vain when unloading module
The module exit path has race between deleting all controllers and
freeing 'left over IDs'. To prevent double free a synchronization
between nvme_delete_ctrl and ida_destroy has been added by the initial
commit.
There is some logic around trying to prevent from hanging forever in
wait_for_completion, though it does not handling all cases. E.g.
blktests is able to reproduce the situation where the module unload
hangs forever.
If we completely rely on the cleanup code executed from the
nvme_delete_ctrl path, all IDs will be freed eventually. This makes
calling ida_destroy unnecessary. We only have to ensure that all
nvme_delete_ctrl code has been executed before we leave
nvme_fc_exit_module. This is done by flushing the nvme_delete_wq
workqueue.
While at it, remove the unused nvme_fc_wq workqueue too.
Severity
Moderate
References
kernel: lib/generic-radix-tree.c: Don't overflow in peek()
CVE-2021-47432
More information
Details
In the Linux kernel, the following vulnerability has been resolved:
lib/generic-radix-tree.c: Don't overflow in peek()
When we started spreading new inode numbers throughout most of the 64
bit inode space, that triggered some corner case bugs, in particular
some integer overflows related to the radix tree code. Oops.
Severity
Moderate
References
kernel: net/sched: act_mirred: use the backlog for mirred ingress
CVE-2024-26740
More information
Details
A potential deadlock flaw was found in net/sched/act_mirred.c in the Linux kernel. This may lead to compromised Availability.
Severity
Moderate
References
kernel: dyndbg: fix old BUG_ON in >control parser
CVE-2024-35947
More information
Details
In the Linux kernel, the following vulnerability has been resolved:
dyndbg: fix old BUG_ON in >control parser
Fix a BUG_ON from 2009. Even if it looks "unreachable" (I didn't
really look), lets make sure by removing it, doing pr_err and return
-EINVAL instead.
Severity
Moderate
References
kernel: ACPI: LPIT: Avoid u32 multiplication overflow
CVE-2023-52683
More information
Details
In the Linux kernel, the following vulnerability has been resolved:
ACPI: LPIT: Avoid u32 multiplication overflow
In lpit_update_residency() there is a possibility of overflow
in multiplication, if tsc_khz is large enough (> UINT_MAX/1000).
Change multiplication to mul_u32_u32().
Found by Linux Verification Center (linuxtesting.org) with SVACE.
Severity
Moderate
References
kernel: drm/vmwgfx: Unmap the surface before resetting it on a plane state
CVE-2023-52648
More information
Details
In the Linux kernel, the following vulnerability has been resolved:
drm/vmwgfx: Unmap the surface before resetting it on a plane state
Switch to a new plane state requires unreferencing of all held surfaces.
In the work required for mob cursors the mapped surfaces started being
cached but the variable indicating whether the surface is currently
mapped was not being reset. This leads to crashes as the duplicated
state, incorrectly, indicates the that surface is mapped even when
no surface is present. That's because after unreferencing the surface
it's perfectly possible for the plane to be backed by a bo instead of a
surface.
Reset the surface mapped flag when unreferencing the plane state surface
to fix null derefs in cleanup. Fixes crashes in KDE KWin 6.0 on Wayland:
Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 4 PID: 2533 Comm: kwin_wayland Not tainted 6.7.0-rc3-vmwgfx #2
Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 11/12/2020
RIP: 0010:vmw_du_cursor_plane_cleanup_fb+0x124/0x140 [vmwgfx]
Code: 00 00 00 75 3a 48 83 c4 10 5b 5d c3 cc cc cc cc 48 8b b3 a8 00 00 00 48 c7 c7 99 90 43 c0 e8 93 c5 db ca 48 8b 83 a8 00 00 00 <48> 8b 78 28 e8 e3 f>
RSP: 0018:ffffb6b98216fa80 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff969d84cdcb00 RCX: 0000000000000027
RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff969e75f21600
RBP: ffff969d4143dc50 R08: 0000000000000000 R09: ffffb6b98216f920
R10: 0000000000000003 R11: ffff969e7feb3b10 R12: 0000000000000000
R13: 0000000000000000 R14: 000000000000027b R15: ffff969d49c9fc00
FS: 00007f1e8f1b4180(0000) GS:ffff969e75f00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000028 CR3: 0000000104006004 CR4: 00000000003706f0
Call Trace:
? __die+0x23/0x70
? page_fault_oops+0x171/0x4e0
? exc_page_fault+0x7f/0x180
? asm_exc_page_fault+0x26/0x30
? vmw_du_cursor_plane_cleanup_fb+0x124/0x140 [vmwgfx]
drm_atomic_helper_cleanup_planes+0x9b/0xc0
commit_tail+0xd1/0x130
drm_atomic_helper_commit+0x11a/0x140
drm_atomic_commit+0x97/0xd0
? __pfx___drm_printfn_info+0x10/0x10
drm_atomic_helper_update_plane+0xf5/0x160
drm_mode_cursor_universal+0x10e/0x270
drm_mode_cursor_common+0x102/0x230
? __pfx_drm_mode_cursor2_ioctl+0x10/0x10
drm_ioctl_kernel+0xb2/0x110
drm_ioctl+0x26d/0x4b0
? __pfx_drm_mode_cursor2_ioctl+0x10/0x10
? __pfx_drm_ioctl+0x10/0x10
vmw_generic_ioctl+0xa4/0x110 [vmwgfx]
__x64_sys_ioctl+0x94/0xd0
do_syscall_64+0x61/0xe0
? __x64_sys_ioctl+0xaf/0xd0
? syscall_exit_to_user_mode+0x2b/0x40
? do_syscall_64+0x70/0xe0
? __x64_sys_ioctl+0xaf/0xd0
? syscall_exit_to_user_mode+0x2b/0x40
? do_syscall_64+0x70/0xe0
? exc_page_fault+0x7f/0x180
entry_SYSCALL_64_after_hwframe+0x6e/0x76
RIP: 0033:0x7f1e93f279ed
Code: 04 25 28 00 00 00 48 89 45 c8 31 c0 48 8d 45 10 c7 45 b0 10 00 00 00 48 89 45 b8 48 8d 45 d0 48 89 45 c0 b8 10 00 00 00 0f 05 <89> c2 3d 00 f0 ff f>
RSP: 002b:00007ffca0faf600 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 000055db876ed2c0 RCX: 00007f1e93f279ed
RDX: 00007ffca0faf6c0 RSI: 00000000c02464bb RDI: 0000000000000015
RBP: 00007ffca0faf650 R08: 000055db87184010 R09: 0000000000000007
R10: 000055db886471a0 R11: 0000000000000246 R12: 00007ffca0faf6c0
R13: 00000000c02464bb R14: 0000000000000015 R15: 00007ffca0faf790
Modules linked in: snd_seq_dummy snd_hrtimer nf_conntrack_netbios_ns nf_conntrack_broadcast nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_ine>
CR2: 0000000000000028
---[ end trace 0000000000000000 ]---
RIP: 0010:vmw_du_cursor_plane_cleanup_fb+0x124/0x140 [vmwgfx]
Code: 00 00 00 75 3a 48 83 c4 10 5b 5d c3 cc cc cc cc 48 8b b3 a8 00 00 00 48 c7 c7 99 90 43 c0 e8 93 c5 db ca 48 8b 83 a8 00 00 00 <48> 8b 78 28 e8 e3 f>
RSP: 0018:ffffb6b98216fa80 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff969d84cdcb00 RCX: 0000000000000027
RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff969e75f21600
RBP: ffff969d4143
---truncated---
Severity
Moderate
References
kernel: bonding: fix null pointer deref in bond_ipsec_offload_ok
CVE-2024-44990
More information
Details
In the Linux kernel, the following vulnerability has been resolved:
bonding: fix null pointer deref in bond_ipsec_offload_ok
We must check if there is an active slave before dereferencing the pointer.
Severity
Moderate
References
kernel: i2c: core: Run atomic i2c xfer when !preemptible
CVE-2023-52791
More information
Details
In the Linux kernel, the following vulnerability has been resolved:
i2c: core: Run atomic i2c xfer when !preemptible
Since bae1d3a05a8b, i2c transfers are non-atomic if preemption is
disabled. However, non-atomic i2c transfers require preemption (e.g. in
wait_for_completion() while waiting for the DMA).
panic() calls preempt_disable_notrace() before calling
emergency_restart(). Therefore, if an i2c device is used for the
restart, the xfer should be atomic. This avoids warnings like:
[ 12.667612] WARNING: CPU: 1 PID: 1 at kernel/rcu/tree_plugin.h:318 rcu_note_context_switch+0x33c/0x6b0
[ 12.676926] Voluntary context switch within RCU read-side critical section!
...
[ 12.742376] schedule_timeout from wait_for_completion_timeout+0x90/0x114
[ 12.749179] wait_for_completion_timeout from tegra_i2c_wait_completion+0x40/0x70
...
[ 12.994527] atomic_notifier_call_chain from machine_restart+0x34/0x58
[ 13.001050] machine_restart from panic+0x2a8/0x32c
Use !preemptible() instead, which is basically t