Skip to content

tabularis-ai/augini

Repository files navigation

PyPI version Downloads Documentation Discord Twitter Follow Last Commit Hugging Face

augini: AI-Powered Tabular Data Assistant

🔥 Demo: https://huggingface.co/spaces/tabularisai/augini

augini logo

augini is an AI-powered data assistant that brings RAG (Retrieval-Augmented Generation) capabilities to your tabular data (CSV, Excel, XLSX). Built with state-of-the-art language models, it provides an intuitive chat interface for data analysis and powerful data manipulation capabilities.

Key Features

🤖 Interactive Data Chat (aka RAG for Tables)

Have natural conversations with your data using augini's chat interface. Works with any tabular format (CSV, Excel, Pandas DataFrames):

from augini import Augini
import pandas as pd

# Initialize with your preferred model
augini = Augini(
    api_key="your-api-key", # Bring Your Own Key (BYOK)
    model="gpt-4o-mini", 
    use_openrouter=True, # use openrouter api if False then use openai api
    )

# Load your data (CSV, Excel, or any pandas-supported format)
df = pd.read_csv("your_data.csv")  # or pd.read_excel("your_data.xlsx")

# Start chatting with your data - properly display markdown responses
from IPython.display import display, Markdown

response = augini.chat("What are the main patterns in this dataset?", df)
display(Markdown(response))

# Ask follow-up questions with context awareness
response = augini.chat("Can you analyze the correlation between age and income?", df)
display(Markdown(response))

🔄 Intelligent Data Augmentation

Enhance your datasets with AI-generated features:

# Add synthetic features based on existing data
result_df = augini.augment_columns(df, ['occupation', 'interests', 'personality_type'])

# Generate custom features with specific prompts
custom_prompt = """
Based on the person's age and location, suggest:
1. A likely income bracket
2. Preferred shopping categories
3. Travel preferences

Respond with a JSON object with keys 'income_bracket', 'shopping_preferences', 'travel_style'.
"""

enriched_df = augini.augment_columns(df, 
    ['income_bracket', 'shopping_preferences', 'travel_style'],
    custom_prompt=custom_prompt
)

🔒 Data Anonymization

Generate privacy-safe synthetic data while preserving statistical properties:

# Define anonymization strategy
anonymize_prompt = """
Create an anonymized version that:
1. Replaces personal identifiers with synthetic data
2. Maintains statistical distributions
3. Preserves relationships between variables

Respond with a JSON object containing anonymized values.
"""

# Apply anonymization
anonymous_df = augini.augment_columns(df, 
    ['name_anon', 'email_anon', 'address_anon'],
    custom_prompt=anonymize_prompt
)

Installation

pip install augini

Quick Start

  1. Get your API key from OpenAI or OpenRouter
  2. Initialize Augini:
# Using OpenAI
augini = Augini(api_key="your-api-key", model="gpt-4o-mini", use_openrouter=False)

# Using OpenRouter
augini = Augini(api_key="your-api-key", model="meta-llama/llama-3-8b-instruct", use_openrouter=True)

Enterprise Solutions

For enterprise deployments, local installations, or custom solutions, contact us: