Fast, async, type-safe job queuing with Redis streams
- Up to ?x faster than competitors
- 100% type safe
- 95%+ unit test coverage
- Comprehensive documentation
- Support for delayed tasks and cron jobs
$ pip install streaq
To start, you'll need to create a Worker
object:
from contextlib import asynccontextmanager
from dataclasses import dataclass
from typing import AsyncIterator
from httpx import AsyncClient
from streaq import Worker, WrappedContext
@dataclass
class Context:
"""
Type safe way of defining the dependencies of your tasks.
e.g. HTTP client, database connection, settings.
"""
http_client: AsyncClient
@asynccontextmanager
async def worker_lifespan() -> AsyncIterator[Context]:
async with AsyncClient() as http_client:
yield Context(http_client)
worker = Worker(redis_url="redis://localhost:6379", worker_lifespan=worker_lifespan)
You can then register async tasks with the worker like this:
@worker.task(timeout=5)
async def fetch(ctx: WrappedContext[Context], url: str) -> int:
# ctx.deps here is of type Context, enforced by static typing
# ctx also provides access to the Redis connection, retry count, etc.
r = await ctx.deps.http_client.get(url)
return len(r.text)
@worker.cron("* * * * mon-fri")
async def cronjob(ctx: WrappedContext[Context]) -> None:
print("It's a bird... It's a plane... It's CRON!")
Finally, use the worker's async context manager to queue up tasks:
async with worker:
await fetch.enqueue("https://tastyware.dev/")
# this will be run directly locally, not enqueued
await fetch.run("https://github.com/python-arq/arq")
# enqueue returns a task object that can be used to get results/info
task = await fetch.enqueue("https://github.com/tastyware/streaq").start(delay=3)
print(await task.info())
print(await task.result(timeout=5))
Putting this all together gives us example.py. Let's spin up a worker:
$ streaq example.worker
and queue up some tasks like so:
$ python example.py
Let's see what the output looks like:
13:25:08: starting worker 0cb8bb10870442e4ba0543c8c5effd29 for 2 functions
13:25:08: redis_version=7.2.5 mem_usage=1.98M clients_connected=6 db_keys=8 queued=0 scheduled=0
13:25:11: task dba141e367f949589fc67d1a12e0f1a5 → worker 0cb8bb10870442e4ba0543c8c5effd29
13:25:12: task dba141e367f949589fc67d1a12e0f1a5 ← 15
13:25:16: task 62f5671e7cde44d1bb26cd1fc16d126e → worker 0cb8bb10870442e4ba0543c8c5effd29
13:25:17: task 62f5671e7cde44d1bb26cd1fc16d126e ← 294815
13:26:00: task cde2413d9593470babfd6d4e36cf4570 → worker 0cb8bb10870442e4ba0543c8c5effd29
It's a bird... It's a plane... It's CRON!
13:26:00: task cde2413d9593470babfd6d4e36cf4570 ← None
TaskData(fn_name='fetch', enqueue_time=1740162312862, task_try=None, scheduled=datetime.datetime(2025, 2, 21, 18, 25, 15, 862000, tzinfo=datetime.timezone.utc))
TaskResult(success=True, result=294815, start_time=1740162316157, finish_time=1740162317140, queue_name='streaq')
For more examples, check out the documentation.