th-nuernberg/gbert-large-german-counseling-gecco

This model is a fine-tuned version of deepset/gbert-large trained with the German E-Counseling Conversation Dataset, created at the Technische Hochschule Nürnberg (see github.com/th-nuernberg/gecco-dataset).

It achieves the following results on the evaluation set: Accuracy 0.78, F1 0.66.

Contact:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 16

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
3.3924 1.0 20 2.9410 0.2032 0.0418
2.7028 2.0 40 2.2499 0.4806 0.2366
2.0665 3.0 60 1.7404 0.6129 0.3537
1.5 4.0 80 1.3602 0.6839 0.4109
1.0794 5.0 100 1.1377 0.7355 0.4971
0.7965 6.0 120 1.0123 0.7548 0.5518
0.6438 7.0 140 0.9806 0.7613 0.5547
0.5039 8.0 160 0.9452 0.7742 0.6019
0.4058 9.0 180 0.9218 0.7774 0.5907
0.3363 10.0 200 0.9373 0.7710 0.6157
0.2451 11.0 220 0.9751 0.7548 0.5955
0.1997 12.0 240 0.9197 0.7839 0.6526
0.1765 13.0 260 0.9187 0.7806 0.6425
0.1453 14.0 280 0.9431 0.7742 0.6357
0.1216 15.0 300 0.9388 0.7839 0.6534
0.1097 16.0 320 0.9290 0.7839 0.6645

Framework versions

  • Transformers 4.35.1
  • Pytorch 1.10.1+cu111
  • Datasets 2.14.7
  • Tokenizers 0.14.1
Downloads last month
188
Safetensors
Model size
336M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for th-nuernberg/gbert-large-german-counseling-gecco

Finetuned
(14)
this model