An implementation of LM(language model).
- cotk
- TensorFlow == 1.13.1
- TensorBoardX >= 1.4
- Downloading dataset and save it to
./data
. (Dataset will be released soon.) - Execute
python run.py
to train the model.- The default dataset is
MSCOCO
. You can use--dataset
to specify otherdataloader
class. - It use
gloves
pretrained word vector by default setting. You can use--wvclass
to specifywordvector
class. - If you don't have GPUs, you can add
--cpu
for switching to CPU, but it may cost very long time.
- The default dataset is
- You can view training process by tensorboard, the log is at
./tensorboard
.- For example,
tensorboard --logdir=./tensorboard
. (You have to install tensorboard first.)
- For example,
- After training, execute
python run.py --mode test --restore best
for test.- You can use
--restore filename
to specify checkpoints files, which are in./model
. --restore last
means last checkpoint,--restore best
means best checkpoints on dev.
- You can use
- Find results at
./output
.
usage: run.py [-h] [--name NAME] [--restore RESTORE] [--mode MODE]
[--dataset DATASET] [--datapath DATAPATH] [--epoch EPOCH]
[--wvclass WVCLASS] [--wvpath WVPATH] [--out_dir OUT_DIR]
[--log_dir LOG_DIR] [--model_dir MODEL_DIR]
[--cache_dir CACHE_DIR] [--cpu] [--debug] [--cache]
optional arguments:
-h, --help show this help message and exit
--name NAME The name of your model, used for variable scope and
tensorboard, etc. Default: runXXXXXX_XXXXXX
(initialized by current time)
--restore RESTORE Checkpoints name to load. "last" for last checkpoints,
"best" for best checkpoints on dev. Attention: "last"
and "best" wiil cause unexpected behaviour when run 2
models in the same dir at the same time. Default: None
(dont load anything)
--mode MODE "train" or "test". Default: train
--dataset DATASET Dataloader class. Default: MSCOCO
--datapath DATAPATH Directory for data set. Default: ./data
--epoch EPOCH Epoch for trainning. Default: 10
--wvclass WVCLASS Wordvector class, None for using Glove pretrained
wordvec. Default: None
--wvpath WVPATH Path for pretrained wordvector. Default: wordvec
--out_dir OUT_DIR Output directory for test output. Default: ./output
--log_dir LOG_DIR Log directory for tensorboard. Default: ./tensorboard
--model_dir MODEL_DIR
Checkpoints directory for model. Default: ./model
--cache_dir CACHE_DIR
Checkpoints directory for cache. Default: ./cache
--cpu Use cpu.
--debug Enter debug mode (using ptvsd).
--cache Use cache for speeding up load data and wordvec. (It
may cause problems when you switch dataset.)
For hyperparameter settings, please refer to run.py
.
Execute tensorboard --logdir=./tensorboard
, you will see the plot in tensorboard pages:
Following plot are shown in this model:
And text output:
"epochs": 10,
"lr": 0.1,
"log_dir": "./tensorboard",
"name": "LM",
"max_sen_length": 50,
"checkpoint_max_to_keep": 5,
"embedding_size": 300,
"momentum": 0.9,
"checkpoint_steps": 1000,
"datapath": "resources://MSCOCO~tsinghua",
"cache": false,
"debug": false,
"wvclass": null,
"restore": "last",
"show_sample": [
0
],
"wvpath": null,
"dh_size": 200,
"batch_size": 128,
"lr_decay": 0.995,
"model_dir": "./model",
"out_dir": "./output",
"cache_dir": "./cache",
"softmax_samples": 512,
"mode": "train",
"grad_clip": 5.0,
"dataset": "MSCOCO",
"cuda": true
Following text are shown in this model:
- args
Execute python run.py --mode test --restore last
The following output will be in ./output/[name]_test.txt
:
self-bleu-3: 0.709417
bw-bleu-3: 0.513164
self-bleu-4: 0.515631
bw-bleu-4: 0.336216
self-bleu-2: 0.870640
fw-bw-bleu-3: 0.550495
perplexity: 13.409582
fw-bleu-4: 0.371952
fw-bleu-2: 0.836639
fw-bw-bleu-4: 0.353182
fw-bleu-3: 0.593684
bw-bleu-2: 0.723493
fw-bw-bleu-2: 0.775963
A man and motorcycle parked on front of a building .
A old desk with a computers computers of computers .
A people in to a table in to a tree sign
A man dog with a in in a bathroom bathroom .
A man young plate to be served by a people .
A man is on a bench next front park of a woods .
A man is a piece feeder 's a in
A man of a old man in a small .
A man is on a bench next looking dog is on her fence . the park station .
A old man is standing a orange tie .
A man is in a dog in to a .
A old desk a and and a and desk .
A of and and a black and a .
A man is a man sitting to a table sign
A up of a plate plate with with a stove pot . the .
A man plate top oven in of kitchen .
A man is on a small cars in a street field .
A man of people are down a street lined street .
A man is in two legs and in a couch . a .
A man is two legs of a person on out a television .
A in a helmet a on front of a building of people .
A man is standing on a dog on a laptop .
Perplexity | |
---|---|
MSCOCO | 13.41 |