This library simplifies access to the meteoblue dataset API.
In order to use this library you need a meteoblue API key.
Features:
- Fetch any dataset from the meteoblue environmental data archive
- Transparently integrates job queues to query large datasets
- Efficiently transfers data using compressed protobuf messages
- Asynchronous interface to query data in parallel
- Data can be used as simple floating-point arrays. No further formatting required.
- Semantic Versioning: The interface for version 1 is declared stable. Breaking interface changes will be published in version 2.
- Ensure that you are using at least Python 3.7 with
python --version(Sometimespython3) - Install the module with
pip install 'meteoblue_dataset_sdk >=1.0,<2.0'(Sometimespip3)
This module will also install the following dependencies automatically:
- aiohttp >=3.6,<4
- protobuf >=3.0,<4
See main.py for a working example. To generate the query JSON it is highly recommended to use the dataset API web interfaces.
import meteoblue_dataset_sdk
import logging
# Display information about the current download state
logging.basicConfig(level=logging.INFO)
query = {
"units": {
"temperature": "C",
"velocity": "km/h",
"length": "metric",
"energy": "watts",
},
"geometry": {
"type": "MultiPoint",
"coordinates": [[7.57327, 47.558399, 279]],
"locationNames": ["Basel"],
},
"format": "protobuf",
"timeIntervals": ["2019-01-01T+00:00/2019-01-01T+00:00"],
"timeIntervalsAlignment": "none",
"queries": [
{
"domain": "NEMSGLOBAL",
"gapFillDomain": None,
"timeResolution": "hourly",
"codes": [{"code": 11, "level": "2 m above gnd"}],
}
],
}
client = meteoblue_dataset_sdk.Client(apikey="xxxxxx")
result = client.query_sync(query)
# result is a structured object containing timestamps and data
timeInterval = result.geometries[0].timeIntervals[0]
data = result.geometries[0].codes[0].timeIntervals[0].data
print(timeInterval)
# start: 1546300800
# end: 1546387200
# stride: 3600NOTE: timeInterval.end is the first timestamp that is not included anymore in the time interval.
If your code is using async/await, you should use await client.query() instead of client.query_sync(). Asynchronous IO is essential for modern webserver frameworks like Flask or FastAPI.
client = meteoblue_dataset_sdk.Client(apikey="xxxxxx")
result = await client.query(query)You can use cache by passing a Cache object to the Client. There is a caching.filecache.FileCache class implemented
in in the meteoblue_dataset_sdk, but you can use your own implementation by using the abstract
class caching.cache.AbstractCache. You can customize the cache duration, the cache location
and the zlib compression level used to compressed the binary data.
import zlib
from meteoblue_dataset_sdk.caching import FileCache
cache = FileCache(path="/tmp/my_cache_dir", max_age=4000, compression_level=zlib.Z_BEST_SPEED)
client = meteoblue_dataset_sdk.Client(apikey="xxxxxx", cache=cache)Data is transferred using protobuf and defined as this protobuf structure.
A 10 year hourly data series for 1 location requires 350 kb using protobuf, compared to 1600 kb using JSON. Additionally the meteoblue Python SDK transfers data using gzip which reduces the size to only 87 kb.
More detailed output of the result protobuf object:
geometries {
domain: "NEMSGLOBAL"
lats: 47.66651916503906
lons: 7.5
asls: 499.7736511230469
locationNames: "Basel"
nx: 1
ny: 1
timeResolution: "hourly"
timeIntervals {
start: 1546300800
end: 1546387200
stride: 3600
}
codes {
code: 11
level: "2 m above gnd"
unit: "\302\260C"
aggregation: "none"
timeIntervals {
data: 2.890000104904175
data: 2.690000057220459
data: 2.549999952316284
data: 2.380000114440918
data: 2.2699999809265137
data: 2.119999885559082
data: 1.9900000095367432
data: 1.8300000429153442
data: 1.8200000524520874
data: 2.0999999046325684
data: 2.430000066757202
data: 2.9200000762939453
data: 3.7200000286102295
data: 3.930000066757202
data: 3.9100000858306885
data: 3.5299999713897705
data: 3.130000114440918
data: 2.880000114440918
data: 2.6500000953674316
data: 2.4600000381469727
data: 2.2799999713897705
data: 2.0299999713897705
data: 1.690000057220459
data: 1.3799999952316284
}
}
}