Use this link to open the stubs notebook in Google CoLab:
http://colab.research.google.com/github/tolaw/dl-tutorial/blob/master/stubs.ipynb
The notebook used in the tutorial:
http://colab.research.google.com/github/tolaw/dl-tutorial/blob/master/reference.ipynb
The presentation in the tutorial:
https://github.com/tolaw/dl-tutorial/raw/master/Deep_Learning_Workshop.pdf
Download the dataset from:
https://github.com/tolaw/dl-tutorial/raw/master/hebrew/train.zip
Pre-process the data, build and train a model that predicts the correct letter
Your solution should include:
- Your code as a Jupyter notebook
- A python function
predict(image_path)
that receives a path to an unprocessed image, runs pre-processing, predicts the correct label and returns it as a number (0
,1
or2
)
The models will be tested on a separate test dataset
The submitter of the best solution will receive a prize
Please submit your solutions to [email protected] before March 26
numpy.ndarray
numpy.ndarray.reshape
keras.datasets.Sequential
keras.datasets.Sequential.compile
keras.datasets.Sequential.fit
keras.datasets.Sequential.evaluate
Keras Optimizers
Keras Loss Functions
keras.layers.Dense
keras.layers.Dropout
keras.layers.Flatten
keras.layers.convolutional.Conv2D
keras.layers.convolutional.MaxPooling2D