uner_ser_set

This model is a fine-tuned version of xlm-roberta-large on the uner_ser_set dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0440
  • Precision: 0.9339
  • Recall: 0.9489
  • F1: 0.9413
  • Accuracy: 0.9931

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5.0

Training results

Framework versions

  • Transformers 4.31.0
  • Pytorch 1.10.1+cu113
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
17
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for universalner/uner_ser_set

Finetuned
(337)
this model

Evaluation results