-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 8a34f11
Showing
48 changed files
with
20,723 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,173 @@ | ||
import torch | ||
import torch.nn as nn | ||
from tools import Tools | ||
|
||
class Action(nn.Module): | ||
def __init__(self, args, p_encoder, a_decoder, hidden_size, main_encoder, | ||
n_topic_vocab, bos_idx, max_len, glo2loc, loc2glo, vocab): | ||
super(Action, self).__init__() | ||
self.args = args | ||
self.p_encoder = p_encoder | ||
self.a_decoder = a_decoder | ||
self.main_encoder = main_encoder | ||
self.vocab = vocab | ||
self.hidden_size = hidden_size | ||
self.n_topic_vocab = n_topic_vocab | ||
self.bos_idx = bos_idx | ||
self.max_len = max_len | ||
self.glo2loc = glo2loc | ||
self.loc2glo = loc2glo | ||
self.gen_proj = nn.Sequential(nn.Linear(self.hidden_size, self.n_topic_vocab)) | ||
|
||
def forward(self, m, l, context, context_len, related_topics, related_topics_len, ar_gth, ar_gth_len, tp_path, tp_path_len, user_id, user_embed, mode, encoder_embed=None, decoder_embed=None, profile_prob=None, tp_path_embed=None): | ||
if l is not None: | ||
l_mask = l.new_ones(l.size(0), 1, l.size(1)) | ||
l_hidden = self.p_encoder(l, l_mask, embed=encoder_embed) | ||
if tp_path_embed==None: | ||
tp_path = one_hot_scatter(tp_path, self.n_topic_vocab) | ||
tp_mask = Tools.get_mask_via_len(tp_path_len, self.args.state_num) | ||
tp_hidden = self.p_encoder(tp_path, tp_mask, embed=encoder_embed) | ||
else: | ||
tp_path = one_hot_scatter(tp_path, self.n_topic_vocab) | ||
tp_mask = Tools.get_mask_via_len(tp_path_len, self.args.state_num) | ||
tp_hidden = self.p_encoder(tp_path_embed, tp_mask, embed=encoder_embed, embed_input=True) | ||
context_mask = Tools.get_mask_via_len(context_len, self.args.context_max_len) | ||
context_hidden = self.main_encoder(context, context_mask) | ||
if related_topics is not None: | ||
related_topics = one_hot_scatter(related_topics, self.n_topic_vocab) | ||
related_topics_mask = Tools.get_mask_via_len(related_topics_len, self.args.relation_num) | ||
related_topic_hidden = self.p_encoder(related_topics, related_topics_mask, embed=encoder_embed) | ||
if m is not None: | ||
m_mask = m.new_ones(m.size(0), 1, m.size(1)) | ||
m_hidden = self.p_encoder(m, m_mask, embed=encoder_embed) | ||
|
||
if m is None: | ||
src_hidden = torch.cat([tp_hidden, context_hidden, related_topic_hidden], 1) | ||
src_mask = torch.cat([tp_mask, context_mask, related_topics_mask], 2) | ||
elif related_topics is None: | ||
src_hidden = torch.cat([m_hidden, l_hidden, tp_hidden, context_hidden], 1) | ||
src_mask = torch.cat([m_mask, l_mask, tp_mask, context_mask], 2) | ||
elif l is None: | ||
src_hidden = torch.cat([m_hidden, tp_hidden, context_hidden, related_topic_hidden], 1) | ||
src_mask = torch.cat([m_mask, tp_mask, context_mask, related_topics_mask], 2) | ||
else: | ||
src_hidden = torch.cat([m_hidden, l_hidden, tp_hidden, context_hidden, related_topic_hidden], 1) | ||
src_mask = torch.cat([m_mask, l_mask, tp_mask, context_mask, related_topics_mask], 2) | ||
|
||
probs = None | ||
action_mask = Tools.get_mask_via_len(ar_gth_len, self.args.action_num) | ||
if mode == 'train': | ||
for i in range(0, self.args.action_num, 2): | ||
seq_gth = ar_gth[:, 0: i + 1] | ||
ar_mask = action_mask[:, :, 0:i + 1] | ||
dec_output = Tools._single_decode(seq_gth.detach(), src_hidden, src_mask, self.a_decoder, ar_mask) | ||
prob = self.proj(dec_output, src_hidden, src_mask, m, l, context, tp_path, related_topics, embed=decoder_embed, profile_prob=profile_prob) | ||
if i == 0: | ||
probs = prob | ||
else: | ||
probs = torch.cat([probs, prob], 1) | ||
return probs | ||
else: | ||
seq_gen = None | ||
for i in range(0, self.args.action_num, 2): | ||
if i == 0: | ||
seq_gen = ar_gth[:, 0:i + 1] | ||
else: | ||
seq_gen = torch.cat([seq_gen, ar_gth[:, i:i + 1]], 1) | ||
ar_mask = action_mask[:, :, 0:i + 1] | ||
dec_output = Tools._single_decode(seq_gen.detach(), src_hidden, src_mask, self.a_decoder, ar_mask) | ||
single_step_prob = self.proj(dec_output, src_hidden, src_mask, m, l, context, tp_path, related_topics, embed=decoder_embed, profile_prob=profile_prob) | ||
if i == 0: | ||
probs = single_step_prob | ||
else: | ||
probs = torch.cat([probs, single_step_prob], 1) | ||
single_step_word = torch.argmax(single_step_prob, -1) | ||
seq_gen = torch.cat([seq_gen, single_step_word], 1) | ||
return seq_gen, probs | ||
|
||
def proj(self, dec_out, src_hidden, src_mask, pv_m, l, context, tp, related_topics, embed=None, profile_prob=None): | ||
B, L_a = dec_out.size(0), dec_out.size(1) | ||
gen_logit = self.gen_prob(dec_out, embed) | ||
copy_logit = torch.bmm(dec_out, src_hidden.permute(0, 2, 1)) | ||
copy_logit = copy_logit.masked_fill((src_mask == 0).expand(-1, L_a, -1), -1e9 if copy_logit.dtype==torch.float32 else -1e4) | ||
logits = torch.cat([gen_logit, copy_logit], -1) | ||
if self.args.scale_prj: | ||
logits *= self.hidden_size ** -0.5 | ||
probs = torch.softmax(logits, -1) | ||
gen_prob = probs[:, :, :self.n_topic_vocab] | ||
if self.args.not_copynet: | ||
probs = gen_prob | ||
elif pv_m is None: | ||
copy_context_prob = probs[:, :, self.n_topic_vocab + self.args.state_num: self.n_topic_vocab + self.args.state_num + self.args.context_max_len] | ||
transfer_context_word = torch.gather(self.glo2loc.unsqueeze(0).expand(B, -1), 1, context) | ||
copy_context_temp = copy_context_prob.new_zeros(B, L_a, self.n_topic_vocab) | ||
copy_context_prob = copy_context_temp.scatter_add(dim=2, | ||
index=transfer_context_word.unsqueeze(1).expand(-1, L_a, -1), | ||
src=copy_context_prob) | ||
copy_tp_prob = probs[:, :, self.n_topic_vocab : self.n_topic_vocab + self.args.state_num] | ||
copy_tp_prob = torch.bmm(copy_tp_prob, tp) | ||
copy_relation_prob = probs[:, :, self.n_topic_vocab + self.args.state_num + self.args.context_max_len:] | ||
copy_relation_prob = torch.bmm(copy_relation_prob, related_topics) | ||
probs = gen_prob + copy_tp_prob + copy_context_prob + copy_relation_prob | ||
elif related_topics is None: | ||
copy_m_prob = probs[:, :, self.n_topic_vocab:self.n_topic_vocab + self.args.preference_num] | ||
copy_m_prob = torch.bmm(copy_m_prob, pv_m) | ||
copy_l_prob = probs[:, :, self.n_topic_vocab + self.args.preference_num:self.n_topic_vocab + self.args.preference_num + self.args.profile_num] | ||
copy_l_prob = torch.bmm(copy_l_prob, l) | ||
copy_context_prob = probs[:, :, self.n_topic_vocab + self.args.preference_num + self.args.profile_num + self.args.state_num: self.n_topic_vocab + self.args.preference_num + self.args.profile_num + self.args.state_num + self.args.context_max_len] | ||
transfer_context_word = torch.gather(self.glo2loc.unsqueeze(0).expand(B, -1), 1, context) | ||
copy_context_temp = copy_context_prob.new_zeros(B, L_a, self.n_topic_vocab) | ||
copy_context_prob = copy_context_temp.scatter_add(dim=2, | ||
index=transfer_context_word.unsqueeze(1).expand(-1, L_a, -1), | ||
src=copy_context_prob) | ||
copy_tp_prob = probs[:, :, self.n_topic_vocab + self.args.preference_num + self.args.profile_num: self.n_topic_vocab + self.args.preference_num + self.args.profile_num + self.args.state_num] | ||
copy_tp_prob = torch.bmm(copy_tp_prob, tp) | ||
probs = gen_prob + copy_l_prob + copy_tp_prob + copy_context_prob + copy_m_prob | ||
elif l is None: | ||
copy_m_prob = probs[:, :, self.n_topic_vocab:self.n_topic_vocab + self.args.preference_num] | ||
copy_m_prob = torch.bmm(copy_m_prob, pv_m) | ||
copy_context_prob = probs[:, :, self.n_topic_vocab + self.args.preference_num + self.args.state_num: self.n_topic_vocab + self.args.preference_num + self.args.state_num + self.args.context_max_len] | ||
transfer_context_word = torch.gather(self.glo2loc.unsqueeze(0).expand(B, -1), 1, context) | ||
copy_context_temp = copy_context_prob.new_zeros(B, L_a, self.n_topic_vocab) | ||
copy_context_prob = copy_context_temp.scatter_add(dim=2, | ||
index=transfer_context_word.unsqueeze(1).expand(-1, L_a, -1), | ||
src=copy_context_prob) | ||
copy_tp_prob = probs[:, :, self.n_topic_vocab + self.args.preference_num: self.n_topic_vocab + self.args.preference_num + self.args.state_num] | ||
copy_tp_prob = torch.bmm(copy_tp_prob, tp) | ||
copy_relation_prob = probs[:, :, self.n_topic_vocab + self.args.preference_num + self.args.state_num + self.args.context_max_len:] | ||
copy_relation_prob = torch.bmm(copy_relation_prob, related_topics) | ||
probs = gen_prob + copy_tp_prob + copy_context_prob + copy_relation_prob + copy_m_prob | ||
else: | ||
copy_m_prob = probs[:, :, self.n_topic_vocab:self.n_topic_vocab + self.args.preference_num] | ||
copy_m_prob = torch.bmm(copy_m_prob, pv_m) | ||
copy_l_prob = probs[:, :, self.n_topic_vocab + self.args.preference_num:self.n_topic_vocab + self.args.preference_num + self.args.profile_num] | ||
copy_l_prob = torch.bmm(copy_l_prob, l) | ||
copy_context_prob = probs[:, :, self.n_topic_vocab + self.args.preference_num + self.args.profile_num + self.args.state_num: self.n_topic_vocab + self.args.preference_num + self.args.profile_num + self.args.state_num + self.args.context_max_len] | ||
transfer_context_word = torch.gather(self.glo2loc.unsqueeze(0).expand(B, -1), 1, context) | ||
copy_context_temp = copy_context_prob.new_zeros(B, L_a, self.n_topic_vocab) | ||
copy_context_prob = copy_context_temp.scatter_add(dim=2, index=transfer_context_word.unsqueeze(1).expand(-1, L_a, -1), src=copy_context_prob) | ||
copy_tp_prob = probs[:, :, self.n_topic_vocab + self.args.preference_num + self.args.profile_num: self.n_topic_vocab + self.args.preference_num + self.args.profile_num + self.args.state_num] | ||
copy_tp_prob = torch.bmm(copy_tp_prob, tp) | ||
copy_relation_prob = probs[:, :, self.n_topic_vocab + self.args.preference_num + self.args.profile_num + self.args.state_num + self.args.context_max_len:] | ||
copy_relation_prob = torch.bmm(copy_relation_prob, related_topics) | ||
probs = gen_prob + copy_l_prob + copy_tp_prob + copy_context_prob + copy_relation_prob + copy_m_prob | ||
if self.args.topic_copynet: | ||
probs = probs + profile_prob.unsqueeze(1) | ||
return probs | ||
|
||
def gen_prob(self, dec_output, embed=None): | ||
|
||
if embed is None: | ||
prob = self.gen_proj(dec_output) | ||
else: | ||
assert embed.size(0) == self.gen_proj[0].out_features | ||
prob = dec_output.matmul(embed.T) | ||
return prob | ||
|
||
|
||
def one_hot_scatter(indice, num_classes, dtype=torch.float): | ||
indice_shape = list(indice.shape) | ||
placeholder = torch.zeros(*(indice_shape + [num_classes]), device=indice.device, dtype=dtype) | ||
v = 1 if dtype == torch.long else 1.0 | ||
placeholder.scatter_(-1, indice.unsqueeze(-1), v) | ||
return placeholder |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,102 @@ | ||
import json | ||
import torch.nn.functional as F | ||
import ipdb | ||
import torch | ||
import torch.nn as nn | ||
from tools import Tools | ||
|
||
class Action(nn.Module): | ||
def __init__(self,p_encoder,a_decoder,hidden_size,main_encoder, | ||
m_encoder,n_topic_vocab,bos_idx,max_len,glo2loc,loc2glo,vocab): | ||
super(Action, self).__init__() | ||
self.p_encoder = p_encoder | ||
self.a_decoder = a_decoder | ||
self.m_encoder = m_encoder | ||
self.main_encoder = main_encoder | ||
self.vocab = vocab | ||
self.hidden_size = hidden_size | ||
self.n_topic_vocab = n_topic_vocab | ||
self.bos_idx = bos_idx | ||
self.max_len = max_len | ||
self.glo2loc = glo2loc | ||
self.loc2glo = loc2glo | ||
self.gen_proj = nn.Linear(self.hidden_size,self.n_topic_vocab) | ||
self.topic2movie = nn.Linear(2583,self.n_topic_vocab-2583) | ||
self.mask = torch.zeros(self.args.batch_size,1,self.n_topic_vocab).cuda() | ||
self.mask[:,:,2583:] = 1 | ||
self.pad = torch.zeros(self.args.batch_size,1,2583).cuda() | ||
def forward(self,m,l,context,context_len,ar_gth,ar_gth_len, | ||
tp_path,tp_path_len,related_movies,related_movies_len,mode): | ||
if mode == 'test': | ||
m = one_hot_scatter(m, self.n_topic_vocab) | ||
l = one_hot_scatter(l, self.n_topic_vocab) | ||
m_mask = m.new_ones(m.size(0),1,m.size(1)) | ||
m_hidden = self.p_encoder(m,m_mask) | ||
l_mask = l.new_ones(l.size(0),1,l.size(1)) | ||
l_hidden = self.p_encoder(l,l_mask) | ||
tp_path = one_hot_scatter(tp_path, self.n_topic_vocab) | ||
tp_mask = Tools.get_mask_via_len(tp_path_len, self.args.state_num) | ||
tp_path_hidden = self.p_encoder(tp_path, tp_mask) | ||
context_mask = Tools.get_mask_via_len(context_len, self.args.context_max_len) | ||
context_hidden = self.main_encoder(context, context_mask) | ||
related_movies = one_hot_scatter(related_movies,self.n_topic_vocab) | ||
related_movies_mask = Tools.get_mask_via_len(related_movies_len,self.args.movie_num) | ||
related_movies_hidden = self.p_encoder(related_movies,related_movies_mask) | ||
src_hidden = torch.cat([m_hidden,l_hidden,context_hidden,tp_path_hidden,related_movies_hidden],1) | ||
src_mask = torch.cat([m_mask,l_mask,context_mask,tp_mask,related_movies_mask],2) | ||
action_mask = Tools.get_mask_via_len(ar_gth_len,self.args.action_num) | ||
if mode == 'train': | ||
seq_gth = ar_gth[:,[0]] | ||
ar_mask = action_mask[:,:,[0]] | ||
dec_output = Tools._single_decode(seq_gth.detach(), src_hidden, src_mask, self.a_decoder, ar_mask) | ||
prob = self.proj(dec_out=dec_output, src_hidden=src_hidden, src_mask=src_mask, | ||
tp=tp_path, m=m, l=l, context=context,related_movies=related_movies) | ||
return prob | ||
else: | ||
seq_gen = ar_gth[:,[0]] | ||
ar_mask = action_mask[:, :, [0]] | ||
dec_output = Tools._single_decode(seq_gen.detach(), src_hidden, src_mask, self.a_decoder,ar_mask) | ||
prob = self.proj(dec_out=dec_output, src_hidden=src_hidden, src_mask=src_mask, | ||
tp=tp_path, m=m, l=l, context=context,related_movies=related_movies) | ||
word = torch.argmax(prob, -1) | ||
return word, prob | ||
|
||
def proj(self,dec_out, src_hidden,src_mask, tp, m, l, context,related_movies ): | ||
B,L_a =dec_out.size(0), dec_out.size(1) | ||
gen_logit = self.gen_proj(dec_out) | ||
copy_logit = torch.bmm(dec_out, src_hidden.permute(0, 2, 1)) | ||
copy_logit = copy_logit.masked_fill((src_mask == 0).expand(-1, L_a, -1), -1e9) | ||
logits = torch.cat([gen_logit, copy_logit], -1) | ||
if self.args.scale_prj: | ||
logits *= self.hidden_size ** -0.5 | ||
probs = torch.softmax(logits, -1) | ||
gen_prob = probs[:, :, :self.n_topic_vocab] | ||
copy_m = probs[:, :, self.n_topic_vocab : | ||
self.n_topic_vocab + self.args.preference_num] | ||
copy_m_prob = torch.bmm(copy_m, m) | ||
copy_l = probs[:, :, self.n_topic_vocab+ self.args.preference_num:self.n_topic_vocab+ self.args.preference_num+ self.args.profile_num] | ||
copy_l_prob = torch.bmm(copy_l, l) | ||
copy_context_prob = probs[:, :, self.n_topic_vocab+ self.args.preference_num+ self.args.profile_num:self.n_topic_vocab+ self.args.preference_num+ self.args.profile_num+ self.args.context_max_len] | ||
transfer_context_word = torch.gather(self.glo2loc.unsqueeze(0).expand(B, -1), 1, context) | ||
copy_context_temp = copy_context_prob.new_zeros(B, L_a, self.n_topic_vocab) | ||
copy_context_prob = copy_context_temp.scatter_add(dim=2, | ||
index=transfer_context_word.unsqueeze(1).expand(-1, L_a, -1), | ||
src=copy_context_prob) | ||
copy_tp = probs[:,:,self.n_topic_vocab+ self.args.preference_num+ self.args.profile_num+ self.args.context_max_len: | ||
self.n_topic_vocab+ self.args.preference_num+ self.args.profile_num+ self.args.context_max_len + self.args.state_num] | ||
copy_tp_prob = torch.bmm(copy_tp, tp) | ||
copy_relation = probs[:,:,self.n_topic_vocab+ self.args.preference_num+ self.args.profile_num+ self.args.context_max_len + self.args.state_num:] | ||
copy_relation = torch.bmm(copy_relation,related_movies) | ||
probs = gen_prob + copy_m_prob + copy_l_prob + copy_context_prob + copy_tp_prob + copy_relation | ||
probs = probs.mul(self.mask) | ||
norm = torch.sum(probs,-1) | ||
norm = norm.unsqueeze(1) | ||
probs/=norm | ||
return probs | ||
|
||
def one_hot_scatter(indice, num_classes, dtype=torch.float): | ||
indice_shape = list(indice.shape) | ||
placeholder = torch.zeros(*(indice_shape + [num_classes]), device=indice.device, dtype=dtype) | ||
v = 1 if dtype == torch.long else 1.0 | ||
placeholder.scatter_(-1, indice.unsqueeze(-1), v) | ||
return placeholder |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,57 @@ | ||
|
||
import argparse | ||
import sys | ||
import numpy as np | ||
from tqdm import tqdm | ||
from nltk.translate.bleu_score import sentence_bleu | ||
import ipdb | ||
import re | ||
import jieba | ||
|
||
def bleu_cal(sen1, tar1): | ||
bleu1 = sentence_bleu([tar1], sen1, weights=(1, 0, 0, 0)) | ||
bleu2 = sentence_bleu([tar1], sen1, weights=(0.5, 0.5, 0, 0)) | ||
bleu3 = sentence_bleu([tar1], sen1, weights=(0.33, 0.33, 0.33, 0)) | ||
bleu4 = sentence_bleu([tar1], sen1, weights=(0.25, 0.25, 0.25, 0.25)) | ||
return bleu1, bleu2, bleu3, bleu4 | ||
|
||
def bleu(args, tokenized_gen, tokenized_tar): | ||
print_num = 0 | ||
bleu1_sum, bleu2_sum, bleu3_sum, bleu4_sum, count = 0, 0, 0, 0, 0 | ||
for sen, tar in zip(tokenized_gen, tokenized_tar): | ||
for j,word in enumerate(sen): | ||
if word == args.EOS_RESPONSE: | ||
sen = sen[:j] | ||
break | ||
tar = tar[1:] | ||
for k,word in enumerate(tar): | ||
if word == args.EOS_RESPONSE: | ||
tar = tar[:k] | ||
break | ||
full_sen_gen = '' | ||
full_sen_gth = '' | ||
for word in sen: | ||
full_sen_gen += word | ||
for word in tar: | ||
full_sen_gth +=word | ||
sen_split_by_movie = list(full_sen_gen.split('<movie>')) | ||
sen_1 = [] | ||
for i, sen_split in enumerate(sen_split_by_movie): | ||
for segment in jieba.cut(sen_split): | ||
sen_1.append(segment) | ||
if i != len(sen_split_by_movie) - 1: | ||
sen_1.append('<movie>') | ||
tar_split_by_movie = list(full_sen_gth.split('<movie>')) | ||
tar_1 = [] | ||
for i, tar_split in enumerate(tar_split_by_movie): | ||
for segment in jieba.cut(tar_split): | ||
tar_1.append(segment) | ||
if i != len(tar_split_by_movie) - 1: | ||
tar_1.append('<movie>') | ||
bleu1, bleu2, bleu3, bleu4 = bleu_cal(sen_1, tar_1) | ||
bleu1_sum += bleu1 | ||
bleu2_sum += bleu2 | ||
bleu3_sum += bleu3 | ||
bleu4_sum += bleu4 | ||
count += 1 | ||
return bleu1_sum / count, bleu2_sum / count, bleu3_sum / count, bleu4_sum / count |
Oops, something went wrong.