bertopic_dcd_auto_final
This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
Usage
To use this model, please install BERTopic:
pip install -U bertopic
You can use the model as follows:
from bertopic import BERTopic
topic_model = BERTopic.load("vidric/bertopic_dcd_auto_final")
topic_model.get_topic_info()
Topic overview
- Number of topics: 40
- Number of training documents: 22195
Click here for an overview of all topics.
Topic ID | Topic Keywords | Topic Frequency | Label |
---|---|---|---|
-1 | wangi - tidak - banget - parfum - hmns | 12 | -1_wangi_tidak_banget_parfum |
0 | wangi - mantap - banget - enak - suka | 7512 | 0_wangi_mantap_banget_enak |
1 | alpha - farhampton - beli - saya - sama | 12436 | 1_alpha_farhampton_beli_saya |
2 | hari - sampai - kirim - minggu - pesan | 903 | 2_hari_sampai_kirim_minggu |
3 | order - repeat - kali - kesekian - bakal | 177 | 3_order_repeat_kali_kesekian |
4 | kalem - nyengat - wangi - enak - banget | 118 | 4_kalem_nyengat_wangi_enak |
5 | indonesia - bangga - produk - terus - harumkan | 70 | 5_indonesia_bangga_produk_terus |
6 | kualitas - bagus - produk - barang - baik | 63 | 6_kualitas_bagus_produk_barang |
7 | selamat - mendarat - dengan - barang - sampai | 61 | 7_selamat_mendarat_dengan_barang |
8 | respon - cepat - quick - good - jawab | 59 | 8_respon_cepat_quick_good |
9 | produk - bagus - sangat - penawaran - oke | 54 | 9_produk_bagus_sangat_penawaran |
10 | pokok - mantap - puas - jon - epic | 49 | 10_pokok_mantap_puas_jon |
11 | voucher - 50rb - 50k - dapat - 50 | 44 | 11_voucher_50rb_50k_dapat |
12 | hadiah - buat - semoga - dia - cocok | 39 | 12_hadiah_buat_semoga_dia |
13 | test - tester - mari - kita - coba | 35 | 13_test_tester_mari_kita |
14 | deskripsi - sesuai - barang - dengan - bagus | 34 | 14_deskripsi_sesuai_barang_dengan |
15 | worth - it - harga - sepadan - serius | 33 | 15_worth_it_harga_sepadan |
16 | chat - admin - barang - balas - respon | 33 | 16_chat_admin_barang_balas |
17 | 10ml - 10 - ml - 50ml - beli | 32 | 17_10ml_10_ml_50ml |
18 | layanan - service - baik - barang - oke | 31 | 18_layanan_service_baik_barang |
19 | 10 - silage - kedepanya - mayanlah - kemasin | 30 | 19_10_silage_kedepanya_mayanlah |
20 | kartu - card - tulis - greting - ucap | 30 | 20_kartu_card_tulis_greting |
21 | beli - 4x - bintang - kedua - pemesanan | 28 | 21_beli_4x_bintang_kedua |
22 | bicara - bintang - biar - nyang - limo | 28 | 22_bicara_bintang_biar_nyang |
23 | unik - istimewa - exceptional - addicted - cerita | 25 | 23_unik_istimewa_exceptional_addicted |
24 | buka - kotak - box - belum - unboxing | 25 | 24_buka_kotak_box_belum |
25 | akhirnya - bagi - dapat - juara - finaly | 21 | 25_akhirnya_bagi_dapat_juara |
26 | starterpacking - semakin - gara - bantu - merosot | 20 | 26_starterpacking_semakin_gara_bantu |
27 | review - orang - saja - zodiak - mag | 19 | 27_review_orang_saja_zodiak |
28 | ketiga - kali - memuaskan - beli - selalu | 18 | 28_ketiga_kali_memuaskan_beli |
29 | layanan - langsung - baru - cepat - service | 17 | 29_layanan_langsung_baru_cepat |
30 | admin - ramah - tersampaikan - mantap - layanan | 17 | 30_admin_ramah_tersampaikan_mantap |
31 | layanan - produk - bagus - service - terbaik | 17 | 31_layanan_produk_bagus_service |
32 | notes - note - midlle - base - mbak | 16 | 32_notes_note_midlle_base |
33 | bangga - lokal - pride - maszeh - kualitas | 16 | 33_bangga_lokal_pride_maszeh |
34 | bintang - harum - kasih - lima - hmns | 16 | 34_bintang_harum_kasih_lima |
35 | botol - kedua - tiga - sihir - ketiga | 15 | 35_botol_kedua_tiga_sihir |
36 | 10 - voucher - hari - november - tanggal | 15 | 36_10_voucher_hari_november |
37 | delta - team - deltanya - theta - senjata | 14 | 37_delta_team_deltanya_theta |
38 | travel - praktis - kecil - ukuran - tepa | 13 | 38_travel_praktis_kecil_ukuran |
Training hyperparameters
- calculate_probabilities: True
- language: None
- low_memory: False
- min_topic_size: 10
- n_gram_range: (1, 1)
- nr_topics: auto
- seed_topic_list: None
- top_n_words: 10
- verbose: False
Framework versions
- Numpy: 1.24.3
- HDBSCAN: 0.8.29
- UMAP: 0.5.3
- Pandas: 2.0.1
- Scikit-Learn: 1.2.2
- Sentence-transformers: 2.2.2
- Transformers: 4.29.2
- Numba: 0.57.0
- Plotly: 5.14.1
- Python: 3.10.10
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.