Skip to content

Ob #60

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 6 commits into
base: master
Choose a base branch
from
Open

Ob #60

Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
193 changes: 193 additions & 0 deletions 05_AdvancedPandas/Train.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,193 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print('hey')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"\"\"\"Shuffle, Shuffle, Shuffle\", say it together!\n",
"Change colors and directions,\n",
"Don't back down and stop the player!\n",
" Do you want to play Taki?\n",
" Press y\\\\n \"\"\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"numbers = \"123456789\"\n",
"numbers[-1:-10]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"encrypted_message = \"!XgXnXiXcXiXlXsX XnXoXhXtXyXpX XgXnXiXnXrXaXeXlX XmXaX XI\"\n",
"encrypted_message[::-2]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"numbers = \"123456789\"\n",
"numbers[0:10:1]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"import pandas as pd\n",
"url = 'https://s3.eu-west-1.amazonaws.com/data.cyber.org.il/virtual_courses/introdata/colab/youth_survey_preprocessed.csv'\n",
"music = pd.read_csv(url)\n",
"music.head"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"import pandas as pd\n",
"url = 'https://s3.eu-west-1.amazonaws.com/data.cyber.org.il/virtual_courses/introdata/colab/youth_survey_preprocessed.csv'\n",
"music = pd.read_csv(url)\n",
"music.head"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Base Installations\n",
"import sys\n",
"import pandas as pd\n",
"import numpy as np \n",
"import matplotlib as plt\n",
"\n",
"# Load Data\n",
"df = pd.read_csv(r'C:\\Users\\bruch\\Desktop\\spotify_tracks1.csv')\n",
"df.head # Checking that the data loaded + Understanding about what the data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df_rename = df.rename(columns= {\n",
" 'popularity':'pop'})\n",
"df_rename.head"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df.shape \n",
"print (f'Total rows : 521260 \\nTotal columns : 18')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df_pop = df.sort_values('popularity', ascending=False) # Sortinggggg\n",
"df_pop.popularity"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df.describe()\n",
"df.info()\n",
"df.memory_usage()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df_pop[['popularity']]"
]
},
{
"cell_type": "code",
"execution_count": 69,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAb2UlEQVR4nO3dfWxV9f3A8c+FYnmQFkEFquVhjig+DETxcZnFsTEG+JA4dT6AmKhzgCDLhk1ErPy0aqZDnUE3N0GjqNsUiXM6Q3Q4Bygg6qarsKF2KuKmtgJalZ7fH8abdaBSvf2WltcrOX+cc78951Nzlbfn3svNZVmWBQBAIh1aewAAYOciPgCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJiQ8AIKmi1h7gfzU2NsZrr70W3bt3j1wu19rjAADbIcuyePfdd6OsrCw6dPjsexs7XHy89tprUV5e3tpjAABfQG1tbey9996fuWaHi4/u3btHxMfDl5SUtPI0AMD2qK+vj/Ly8vyf459lh4uPT15qKSkpER8A0MZsz1smvOEUAEhKfAAASYkPACAp8QEAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEk1Oz6WLFkS48aNi7KyssjlcrFw4cJPXfuDH/wgcrlczJkz50uMCAC0J82Oj02bNsWQIUPixhtv/Mx19913XyxbtizKysq+8HAAQPvT7C+WGz16dIwePfoz17z66qsxZcqUePjhh2PMmDFfeDgAoP0p+LfaNjY2xplnnhk//vGP44ADDvjc9Q0NDdHQ0JDfr6+vL/RIAMAOpODxcdVVV0VRUVFccMEF27W+uro6qqqqCj3Gpxpw0e+TXYsd00tXuhsH0JoK+mmXlStXxnXXXRfz5s2LXC63XT9TWVkZdXV1+a22traQIwEAO5iCxsfjjz8eGzZsiH79+kVRUVEUFRXFyy+/HD/60Y9iwIAB2/yZ4uLiKCkpabIBAO1XQV92OfPMM2PkyJFNjo0aNSrOPPPMmDhxYiEvBQC0Uc2Oj40bN8batWvz++vWrYvVq1dHz549o1+/ftGrV68m6zt16hR9+vSJfffd98tPCwC0ec2OjxUrVsSIESPy+9OnT4+IiAkTJsS8efMKNhgA0D41Oz4qKioiy7LtXv/SSy819xIAQDvmu10AgKTEBwCQlPgAAJISHwBAUuIDAEhKfAAASYkPACAp8QEAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJiQ8AICnxAQAkJT4AgKTEBwCQlPgAAJISHwBAUuIDAEhKfAAASYkPACAp8QEAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgqWbHx5IlS2LcuHFRVlYWuVwuFi5cmH/sww8/jBkzZsRBBx0U3bp1i7Kyshg/fny89tprhZwZAGjDmh0fmzZtiiFDhsSNN9641WObN2+OVatWxcyZM2PVqlVx7733Rk1NTRx33HEFGRYAaPuKmvsDo0ePjtGjR2/zsdLS0njkkUeaHPv5z38ehx12WLzyyivRr1+/LzYlANButPh7Purq6iKXy0WPHj1a+lIAQBvQ7DsfzfH+++/HjBkz4vvf/36UlJRsc01DQ0M0NDTk9+vr61tyJACglbVYfHz44Ydx8sknR5ZlMXfu3E9dV11dHVVVVS01BuxwBlz0+9YegVb20pVjWnsEaFUt8rLLJ+Hx8ssvxyOPPPKpdz0iIiorK6Ouri6/1dbWtsRIAMAOouB3Pj4JjzVr1sSjjz4avXr1+sz1xcXFUVxcXOgxAIAdVLPjY+PGjbF27dr8/rp162L16tXRs2fP6Nu3b5x00kmxatWqeOCBB2LLli2xfv36iIjo2bNn7LLLLoWbHABok5odHytWrIgRI0bk96dPnx4RERMmTIhLL700Fi1aFBERQ4cObfJzjz76aFRUVHzxSQGAdqHZ8VFRURFZln3q45/1GACA73YBAJISHwBAUuIDAEhKfAAASYkPACAp8QEAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJiQ8AICnxAQAkJT4AgKTEBwCQlPgAAJISHwBAUuIDAEhKfAAASYkPACAp8QEAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApMQHAJBUs+NjyZIlMW7cuCgrK4tcLhcLFy5s8niWZXHJJZdE3759o0uXLjFy5MhYs2ZNoeYFANq4ZsfHpk2bYsiQIXHjjTdu8/Grr746rr/++rjpppti+fLl0a1btxg1alS8//77X3pYAKDtK2ruD4wePTpGjx69zceyLIs5c+bExRdfHMcff3xERNx2223Ru3fvWLhwYZx66qlfbloAoM0r6Hs+1q1bF+vXr4+RI0fmj5WWlsbhhx8eS5cu3ebPNDQ0RH19fZMNAGi/Chof69evj4iI3r17Nzneu3fv/GP/q7q6OkpLS/NbeXl5IUcCAHYwrf5pl8rKyqirq8tvtbW1rT0SANCCChofffr0iYiIN954o8nxN954I//Y/youLo6SkpImGwDQfhU0PgYOHBh9+vSJxYsX54/V19fH8uXL48gjjyzkpQCANqrZn3bZuHFjrF27Nr+/bt26WL16dfTs2TP69esX06ZNi//7v/+LQYMGxcCBA2PmzJlRVlYWJ5xwQiHnBgDaqGbHx4oVK2LEiBH5/enTp0dExIQJE2LevHnxk5/8JDZt2hTnnntuvPPOO/H1r389HnrooejcuXPhpgYA2qxmx0dFRUVkWfapj+dyubjsssvisssu+1KDAQDtU6t/2gUA2LmIDwAgKfEBACQlPgCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJiQ8AICnxAQAkJT4AgKTEBwCQlPgAAJISHwBAUuIDAEhKfAAASYkPACAp8QEAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJiQ8AICnxAQAkJT4AgKTEBwCQlPgAAJISHwBAUgWPjy1btsTMmTNj4MCB0aVLl9hnn31i9uzZkWVZoS8FALRBRYU+4VVXXRVz586N+fPnxwEHHBArVqyIiRMnRmlpaVxwwQWFvhwA0MYUPD7+8pe/xPHHHx9jxoyJiIgBAwbEggUL4sknnyz0pQCANqjgL7scddRRsXjx4njxxRcjIuKZZ56JP//5zzF69Ohtrm9oaIj6+vomGwDQfhX8zsdFF10U9fX1sd9++0XHjh1jy5Ytcfnll8fpp5++zfXV1dVRVVVV6DEAgB1Uwe983HPPPXHHHXfEnXfeGatWrYr58+fHT3/605g/f/4211dWVkZdXV1+q62tLfRIAMAOpOB3Pn784x/HRRddFKeeempERBx00EHx8ssvR3V1dUyYMGGr9cXFxVFcXFzoMQCAHVTB73xs3rw5OnRoetqOHTtGY2NjoS8FALRBBb/zMW7cuLj88sujX79+ccABB8TTTz8d1157bZx99tmFvhQA0AYVPD5uuOGGmDlzZvzwhz+MDRs2RFlZWZx33nlxySWXFPpSAEAbVPD46N69e8yZMyfmzJlT6FMDAO2A73YBAJISHwBAUuIDAEhKfAAASYkPACAp8QEAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJiQ8AICnxAQAkJT4AgKTEBwCQlPgAAJISHwBAUuIDAEhKfAAASYkPACAp8QEAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApFokPl599dU444wzolevXtGlS5c46KCDYsWKFS1xKQCgjSkq9AnffvvtOProo2PEiBHxhz/8IfbYY49Ys2ZN7LbbboW+FADQBhU8Pq666qooLy+PW2+9NX9s4MCBhb4MANBGFfxll0WLFsWhhx4a3/ve92LPPfeMgw8+OH75y19+6vqGhoaor69vsgEA7VfB4+Of//xnzJ07NwYNGhQPP/xwnH/++XHBBRfE/Pnzt7m+uro6SktL81t5eXmhRwIAdiAFj4/GxsYYNmxYXHHFFXHwwQfHueeeG+ecc07cdNNN21xfWVkZdXV1+a22trbQIwEAO5CCx0ffvn1j//33b3Js8ODB8corr2xzfXFxcZSUlDTZAID2q+DxcfTRR0dNTU2TYy+++GL079+/0JcCANqggsfHhRdeGMuWLYsrrrgi1q5dG3feeWf84he/iEmTJhX6UgBAG1Tw+Bg+fHjcd999sWDBgjjwwANj9uzZMWfOnDj99NMLfSkAoA0q+N/zERExduzYGDt2bEucGgBo43y3CwCQlPgAAJISHwBAUuIDAEhKfAAASYkPACAp8QEAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJiQ8AICnxAQAkJT4AgKTEBwCQlPgAAJISHwBAUuIDAEhKfAAASYkPACAp8QEAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApFo8Pq688srI5XIxbdq0lr4UANAGtGh8PPXUU3HzzTfH1772tZa8DADQhrRYfGzcuDFOP/30+OUvfxm77bZbS10GAGhjWiw+Jk2aFGPGjImRI0d+5rqGhoaor69vsgEA7VdRS5z0rrvuilWrVsVTTz31uWurq6ujqqqqJcYAYBsGXPT71h6BVvbSlWNa9foFv/NRW1sbU6dOjTvuuCM6d+78uesrKyujrq4uv9XW1hZ6JABgB1LwOx8rV66MDRs2xLBhw/LHtmzZEkuWLImf//zn0dDQEB07dsw/VlxcHMXFxYUeAwDYQRU8Pr75zW/Gc8891+TYxIkTY7/99osZM2Y0CQ8AYOdT8Pjo3r17HHjggU2OdevWLXr16rXVcQBg5+NvOAUAkmqRT7v8r8ceeyzFZQCANsCdDwAgKfEBACQlPgCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJiQ8AICnxAQAkJT4AgKTEBwCQlPgAAJISHwBAUuIDAEhKfAAASYkPACAp8QEAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJiQ8AICnxAQAkJT4AgKTEBwCQlPgAAJISHwBAUuIDAEiq4PFRXV0dw4cPj+7du8eee+4ZJ5xwQtTU1BT6MgBAG1Xw+PjTn/4UkyZNimXLlsUjjzwSH374YXz729+OTZs2FfpSAEAbVFToEz700ENN9ufNmxd77rlnrFy5Mr7xjW8U+nIAQBtT8Pj4X3V1dRER0bNnz20+3tDQEA0NDfn9+vr6lh4JAGhFLfqG08bGxpg2bVocffTRceCBB25zTXV1dZSWlua38vLylhwJAGhlLRofkyZNir/+9a9x1113feqaysrKqKury2+1tbUtORIA0Mpa7GWXyZMnxwMPPBBLliyJvffe+1PXFRcXR3FxcUuNAQDsYAoeH1mWxZQpU+K+++6Lxx57LAYOHFjoSwAAbVjB42PSpElx5513xv333x/du3eP9evXR0REaWlpdOnSpdCXAwDamIK/52Pu3LlRV1cXFRUV0bdv3/x29913F/pSAEAb1CIvuwAAfBrf7QIAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJiQ8AICnxAQAkJT4AgKTEBwCQlPgAAJISHwBAUuIDAEhKfAAASYkPACAp8QEAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJtVh83HjjjTFgwIDo3LlzHH744fHkk0+21KUAgDakReLj7rvvjunTp8esWbNi1apVMWTIkBg1alRs2LChJS4HALQhLRIf1157bZxzzjkxceLE2H///eOmm26Krl27xq9//euWuBwA0IYUFfqEH3zwQaxcuTIqKyvzxzp06BAjR46MpUuXbrW+oaEhGhoa8vt1dXUREVFfX1/o0SIiorFhc4ucl7ajpZ5b28tzEM9BWltLPAc/OWeWZZ+7tuDx8e9//zu2bNkSvXv3bnK8d+/e8fe//32r9dXV1VFVVbXV8fLy8kKPBhERUTqntSdgZ+c5SGtryefgu+++G6WlpZ+5puDx0VyVlZUxffr0/H5jY2O89dZb0atXr8jlcq04WftTX18f5eXlUVtbGyUlJa09Djshz0Fam+dgy8myLN59990oKyv73LUFj4/dd989OnbsGG+88UaT42+88Ub06dNnq/XFxcVRXFzc5FiPHj0KPRb/paSkxL90tCrPQVqb52DL+Lw7Hp8o+BtOd9lllzjkkENi8eLF+WONjY2xePHiOPLIIwt9OQCgjWmRl12mT58eEyZMiEMPPTQOO+ywmDNnTmzatCkmTpzYEpcDANqQFomPU045Jd5888245JJLYv369TF06NB46KGHtnoTKmkVFxfHrFmztnqZC1LxHKS1eQ7uGHLZ9nwmBgCgQHy3CwCQlPgAAJISHwBAUuIDSCqXy8XChQtbewwSqqioiGnTprX2GOxAxAcALeree++N2bNnF+Rc7SVeH3vsscjlcvHOO++09iitotX/enVg5/HBBx+09gi0gp49eya93gcffBC77LJL0mvSPO58tHEVFRUxefLkmDx5cpSWlsbuu+8eM2fOzH+r4Ntvvx3jx4+P3XbbLbp27RqjR4+ONWvW5H9+3rx50aNHj1i4cGEMGjQoOnfuHKNGjYra2trW+pVoRz55fk6bNi123333GDVq1FZrZs2aFX379o1nn322FSYkhf9+2WXAgAFxxRVXxNlnnx3du3ePfv36xS9+8Yv82g8++CAmT54cffv2jc6dO0f//v2juro6/7MRESeeeGLkcrn8/qWXXhpDhw6NW265JQYOHBidO3fOr58zZ06TWYYOHRqXXnppfj+Xy8XNN98cY8eOja5du8bgwYNj6dKlsXbt2qioqIhu3brFUUcdFf/4xz+anOf++++PYcOGRefOneMrX/lKVFVVxUcffdTkvLfcckuceOKJ0bVr1xg0aFAsWrQoIiJeeumlGDFiRERE7LbbbpHL5eKss876Mv+I2xzx0Q7Mnz8/ioqK4sknn4zrrrsurr322rjlllsiIuKss86KFStWxKJFi2Lp0qWRZVl897vfjQ8//DD/85s3b47LL788brvttnjiiSfinXfeiVNPPbW1fh3amfnz58cuu+wSTzzxRNx0003541mWxZQpU+K2226Lxx9/PL72ta+14pSkdM0118Shhx4aTz/9dPzwhz+M888/P2pqaiIi4vrrr49FixbFPffcEzU1NXHHHXfkI+Opp56KiIhbb701Xn/99fx+RMTatWvjd7/7Xdx7772xevXqZs0ze/bsGD9+fKxevTr222+/OO200+K8886LysrKWLFiRWRZFpMnT86vf/zxx2P8+PExderUeP755+Pmm2+OefPmxeWXX97kvFVVVXHyySfHs88+G9/97nfj9NNPj7feeivKy8vjd7/7XURE1NTUxOuvvx7XXXddc/8xtm0ZbdoxxxyTDR48OGtsbMwfmzFjRjZ48ODsxRdfzCIie+KJJ/KP/fvf/866dOmS3XPPPVmWZdmtt96aRUS2bNmy/JoXXnghi4hs+fLl6X4R2qVjjjkmO/jgg5sci4jsN7/5TXbaaadlgwcPzv71r3+10nSkcswxx2RTp07NsizL+vfvn51xxhn5xxobG7M999wzmzt3bpZlWTZlypTs2GOPbfLftP8WEdl9993X5NisWbOyTp06ZRs2bGhyvH///tnPfvazJseGDBmSzZo1q8n5Lr744vz+0qVLs4jIfvWrX+WPLViwIOvcuXN+/5vf/GZ2xRVXNDnv7bffnvXt2/dTz7tx48YsIrI//OEPWZZl2aOPPppFRPb2229v8/ds79z5aAeOOOKIyOVy+f0jjzwy1qxZE88//3wUFRXF4Ycfnn+sV69ese+++8YLL7yQP1ZUVBTDhw/P7++3337Ro0ePJmvgizrkkEO2OnbhhRfG8uXLY8mSJbHXXnu1wlS0pv++y5XL5aJPnz6xYcOGiPj4bu3q1atj3333jQsuuCD++Mc/btc5+/fvH3vssceXnueTrwE56KCDmhx7//33o76+PiIinnnmmbjsssti1113zW/nnHNOvP7667F58+Ztnrdbt25RUlKS/z13duIDaFHdunXb6ti3vvWtePXVV+Phhx9uhYlobZ06dWqyn8vlorGxMSIihg0bFuvWrYvZs2fHe++9FyeffHKcdNJJn3vObT3POnTokH//2yf++yXnbc3zyf/IbevYJzNu3LgxqqqqYvXq1fntueeeizVr1uTfb/J5v+fOzqdd2oHly5c32V+2bFkMGjQo9t9///joo49i+fLlcdRRR0VExH/+85+oqamJ/fffP7/+o48+ihUrVsRhhx0WER+/BvnOO+/E4MGD0/0S7FSOO+64GDduXJx22mnRsWNH7zGiiZKSkjjllFPilFNOiZNOOim+853vxFtvvRU9e/aMTp06xZYtW7brPHvssUe8/vrr+f36+vpYt27dl55v2LBhUVNTE1/96le/8Dk++TTO9v4u7Y07H+3AK6+8EtOnT4+amppYsGBB3HDDDTF16tQYNGhQHH/88XHOOefEn//853jmmWfijDPOiL322iuOP/74/M936tQppkyZEsuXL4+VK1fGWWedFUcccUQ+RqAlnHjiiXH77bfHxIkT47e//W1rj8MO4tprr40FCxbE3//+93jxxRfjN7/5TfTp0yd69OgRER9/gmXx4sWxfv36ePvttz/zXMcee2zcfvvt8fjjj8dzzz0XEyZMiI4dO37pGS+55JK47bbboqqqKv72t7/FCy+8EHfddVdcfPHF232O/v37Ry6XiwceeCDefPPN2Lhx45eeqy0RH+3A+PHj47333ovDDjssJk2aFFOnTo1zzz03Ij5+V/ghhxwSY8eOjSOPPDKyLIsHH3ywye3Arl27xowZM+K0006Lo48+Onbddde4++67W+vXYSdy0kknxfz58+PMM8+Me++9t7XHYQfQvXv3uPrqq+PQQw+N4cOHx0svvRQPPvhgdOjw8R9X11xzTTzyyCNRXl4eBx988Geeq7KyMo455pgYO3ZsjBkzJk444YTYZ599vvSMo0aNigceeCD++Mc/xvDhw+OII46In/3sZ9G/f//tPsdee+0VVVVVcdFFF0Xv3r2bfJpmZ5DL/vcFMdqUioqKGDp06FafZd9e8+bNi2nTpu20f8seAOm58wEAJCU+AICkvOwCACTlzgcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApMQHAJDU/wPcsFBhB1dW9wAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"plt.figure()\n",
"plt.bar(['pop','rk','instrument'], [14,12,4])\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Loading