-
Notifications
You must be signed in to change notification settings - Fork 609
[TEST] Add eagle proposer ut #4447
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
+314
−0
Merged
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,314 @@ | ||
| from unittest.mock import MagicMock, patch | ||
|
|
||
| import numpy as np | ||
| import torch | ||
| from vllm.config import CacheConfig, CompilationMode, VllmConfig | ||
|
|
||
| from tests.ut.base import TestBase | ||
| from vllm_ascend.spec_decode.eagle_proposer import EagleProposer | ||
| from vllm_ascend.spec_decode.interface import SpecDcodeType | ||
|
|
||
|
|
||
| class TestEagleProposerInitialization(TestBase): | ||
|
|
||
| def setUp(self): | ||
| self.vllm_config = MagicMock(spec=VllmConfig) | ||
| self.vllm_config.speculative_config = MagicMock() | ||
| self.vllm_config.cache_config = MagicMock(spec=CacheConfig) | ||
| self.vllm_config.scheduler_config = MagicMock() | ||
| self.vllm_config.model_config = MagicMock() | ||
| self.device = torch.device("cpu") | ||
| self.runner = MagicMock() | ||
|
|
||
| self.vllm_config.cache_config.block_size = 16 | ||
| self.vllm_config.scheduler_config.max_num_batched_tokens = 1024 | ||
| self.vllm_config.scheduler_config.max_num_seqs = 32 | ||
| self.vllm_config.model_config.dtype = torch.float16 | ||
| self.vllm_config.model_config.max_model_len = 2048 | ||
|
|
||
| def test_initialization_eagle(self): | ||
| self.vllm_config.speculative_config.method = "eagle" | ||
| self.vllm_config.speculative_config.draft_model_config.get_hidden_size.return_value = 4096 | ||
| self.vllm_config.compilation_config.mode = CompilationMode.VLLM_COMPILE | ||
| self.vllm_config.model_config.enforce_eager = False | ||
|
|
||
| proposer = EagleProposer(vllm_config=self.vllm_config, | ||
| device=self.device, | ||
| runner=self.runner) | ||
|
|
||
| self.assertEqual(proposer.name, SpecDcodeType.EAGLE) | ||
| self.assertEqual(proposer.block_size, 16) | ||
| self.assertEqual(proposer.hidden_size, 4096) | ||
| self.assertTrue(proposer.use_cuda_graph) | ||
|
|
||
| self.assertEqual(proposer.input_ids.shape, (1024, )) | ||
| self.assertEqual(proposer.positions.shape, (1024, )) | ||
| self.assertEqual(proposer.hidden_states.shape, (1024, 4096)) | ||
| self.assertEqual(proposer.arange.shape, (33, )) | ||
|
|
||
| def test_initialization_eagle3(self): | ||
| self.vllm_config.speculative_config.method = "eagle3" | ||
| self.vllm_config.speculative_config.draft_model_config.get_hidden_size.return_value = 2048 | ||
| self.vllm_config.compilation_config.mode = CompilationMode.NONE | ||
| self.vllm_config.model_config.enforce_eager = True | ||
|
|
||
| proposer = EagleProposer(vllm_config=self.vllm_config, | ||
| device=self.device, | ||
| runner=self.runner) | ||
|
|
||
| self.assertEqual(proposer.name, SpecDcodeType.EAGLE3) | ||
| self.assertEqual(proposer.hidden_size, 2048) | ||
| self.assertFalse(proposer.use_cuda_graph) | ||
| self.assertEqual(proposer.hidden_states.shape, (1024, 2048)) | ||
|
|
||
|
|
||
| class TestEagleProposerLoadModel(TestBase): | ||
|
|
||
| def setUp(self): | ||
| self.vllm_config = MagicMock(spec=VllmConfig) | ||
| self.vllm_config.speculative_config = MagicMock() | ||
| self.vllm_config.speculative_config.method = "eagle" | ||
| self.device = torch.device("cpu") | ||
| self.runner = MagicMock() | ||
|
|
||
| self.vllm_config.cache_config.block_size = 16 | ||
| self.vllm_config.scheduler_config.max_num_batched_tokens = 1024 | ||
| self.vllm_config.scheduler_config.max_num_seqs = 32 | ||
| self.vllm_config.model_config.dtype = torch.float16 | ||
| self.vllm_config.model_config.max_model_len = 2048 | ||
|
|
||
| self.proposer = EagleProposer(vllm_config=self.vllm_config, | ||
| device=self.device, | ||
| runner=self.runner) | ||
|
|
||
| @patch( | ||
| "vllm_ascend.spec_decode.eagle_proposer.get_layers_from_vllm_config") | ||
| @patch("vllm_ascend.spec_decode.eagle_proposer.get_model") | ||
| @patch("vllm_ascend.spec_decode.eagle_proposer.get_pp_group") | ||
| def test_load_model_pp1(self, mock_pp_group, mock_get_model, | ||
| mock_get_layers): | ||
| mock_pp_group.return_value.world_size = 1 | ||
| mock_target_layers = {"layer1": MagicMock(), "layer2": MagicMock()} | ||
| mock_draft_layers = {"layer1": MagicMock(), "layer3": MagicMock()} | ||
| mock_get_layers.side_effect = [mock_target_layers, mock_draft_layers] | ||
|
|
||
| mock_model = MagicMock() | ||
| mock_model.model.embed_tokens = MagicMock() | ||
| mock_model.lm_head = MagicMock() | ||
| mock_get_model.return_value = MagicMock() | ||
| self.proposer.name = SpecDcodeType.EAGLE | ||
|
|
||
| self.proposer.load_model(mock_model) | ||
| mock_get_model.assert_called_once() | ||
| self.assertEqual(self.proposer.attn_layer_name, "layer3") | ||
| self.assertIs(self.proposer.model.model.embed_tokens, | ||
| mock_model.model.embed_tokens) | ||
|
|
||
| @patch( | ||
| "vllm_ascend.spec_decode.eagle_proposer.get_layers_from_vllm_config") | ||
| @patch("vllm_ascend.spec_decode.eagle_proposer.get_model") | ||
| @patch("vllm_ascend.spec_decode.eagle_proposer.get_pp_group") | ||
| def test_load_model_pp_gt1(self, mock_pp_group, mock_get_model, | ||
| mock_get_layers): | ||
| mock_pp_group.return_value.world_size = 2 | ||
| mock_target_layers = {"layer1": MagicMock()} | ||
| mock_draft_layers = {"layer2": MagicMock()} | ||
| mock_get_layers.side_effect = [mock_target_layers, mock_draft_layers] | ||
|
|
||
| mock_model = MagicMock() | ||
| original_embed = MagicMock() | ||
| mock_get_model.return_value = MagicMock(model=MagicMock( | ||
| embed_tokens=original_embed)) | ||
|
|
||
| self.proposer.load_model(mock_model) | ||
|
|
||
| self.assertIsNot(self.proposer.model.model.embed_tokens, | ||
| mock_model.model.embed_tokens) | ||
| self.assertEqual(self.proposer.attn_layer_name, "layer2") | ||
|
|
||
| @patch( | ||
| "vllm_ascend.spec_decode.eagle_proposer.get_layers_from_vllm_config") | ||
| @patch("vllm_ascend.spec_decode.eagle_proposer.get_model") | ||
| @patch("vllm_ascend.spec_decode.eagle_proposer.get_pp_group") | ||
| @patch("vllm_ascend.spec_decode.eagle_proposer.supports_multimodal") | ||
| def test_load_model_multimodal(self, mock_supports_multi, mock_pp_group, | ||
| mock_get_model, mock_get_layers): | ||
| mock_model = MagicMock() | ||
| mock_model.get_language_model.return_value.lm_head = MagicMock() | ||
| mock_supports_multi.return_value = True | ||
| original_embed = MagicMock() | ||
| mock_get_model.return_value = MagicMock(model=MagicMock( | ||
| embed_tokens=original_embed)) | ||
|
|
||
| mock_target_layers = {"layer1": MagicMock()} | ||
| mock_draft_layers = {"layer2": MagicMock()} | ||
| mock_get_layers.side_effect = [mock_target_layers, mock_draft_layers] | ||
| mock_pp_group.return_value.world_size = 2 | ||
|
|
||
| self.proposer.model = MagicMock() | ||
| self.proposer.name = SpecDcodeType.EAGLE | ||
|
|
||
| self.proposer.load_model(mock_model) | ||
| mock_model.get_language_model.assert_called_once() | ||
| self.assertIs(self.proposer.model.lm_head, | ||
| mock_model.get_language_model.return_value.lm_head) | ||
|
|
||
|
|
||
| class TestEagleProposerDummyRun(TestBase): | ||
|
|
||
| def setUp(self): | ||
| self.vllm_config = MagicMock(spec=VllmConfig) | ||
| self.vllm_config.speculative_config = MagicMock() | ||
| self.device = torch.device("cpu") | ||
| self.runner = MagicMock() | ||
| self.runner._select_moe_comm_method.return_value = "alltoall" | ||
|
|
||
| self.vllm_config.cache_config.block_size = 16 | ||
| self.vllm_config.scheduler_config.max_num_batched_tokens = 1024 | ||
| self.vllm_config.scheduler_config.max_num_seqs = 32 | ||
| self.vllm_config.model_config.dtype = torch.float16 | ||
| self.vllm_config.model_config.max_model_len = 2048 | ||
|
|
||
| self.proposer = EagleProposer(vllm_config=self.vllm_config, | ||
| device=self.device, | ||
| runner=self.runner) | ||
| self.proposer.model = MagicMock() | ||
|
|
||
| @patch("vllm_ascend.spec_decode.eagle_proposer.set_ascend_forward_context") | ||
| def test_dummy_run_basic(self, mock_context): | ||
| num_tokens = 32 | ||
| with_prefill = False | ||
|
|
||
| self.proposer.dummy_run(num_tokens=num_tokens, | ||
| with_prefill=with_prefill) | ||
|
|
||
| mock_context.assert_called_once() | ||
|
|
||
| @patch("vllm_ascend.spec_decode.eagle_proposer.set_ascend_forward_context") | ||
| def test_dummy_run_with_prefill(self, mock_context): | ||
| mock_context.return_value.__enter__.return_value = None | ||
| self.proposer.dummy_run(num_tokens=64, with_prefill=True, num_reqs=4) | ||
|
|
||
| self.runner._select_moe_comm_method.assert_called_with(64) | ||
| self.proposer.model.assert_called_once() | ||
|
|
||
|
|
||
| class TestEagleProposerGenerateTokenIds(TestBase): | ||
|
|
||
| def setUp(self): | ||
| self.vllm_config = MagicMock(spec=VllmConfig) | ||
| self.vllm_config.speculative_config = MagicMock() | ||
| self.vllm_config.speculative_config.method = "eagle" | ||
| self.device = torch.device("cpu") | ||
| self.runner = MagicMock() | ||
| self.runner.input_batch = MagicMock() | ||
| self.runner.input_batch.req_ids = [0, 1, 2] | ||
| self.runner.requests = { | ||
| 0: MagicMock(get_token_id=lambda x: 100), | ||
| 1: MagicMock(get_token_id=lambda x: 101), | ||
| 2: MagicMock(get_token_id=lambda x: 102), | ||
| } | ||
|
|
||
| self.vllm_config.cache_config.block_size = 16 | ||
| self.vllm_config.scheduler_config.max_num_batched_tokens = 1024 | ||
| self.vllm_config.scheduler_config.max_num_seqs = 32 | ||
| self.vllm_config.model_config.dtype = torch.float16 | ||
| self.vllm_config.model_config.max_model_len = 2048 | ||
|
|
||
| self.proposer = EagleProposer(vllm_config=self.vllm_config, | ||
| device=self.device, | ||
| runner=self.runner) | ||
| self.proposer.attn_layer_name = "layer_0" | ||
| self.proposer._propose = MagicMock( | ||
| return_value=torch.tensor([[1, 2], [3, 4], [5, 6]])) | ||
|
|
||
| def test_generate_token_ids_without_metadata(self): | ||
| valid_sampled = [[20, 30, 40]] | ||
| valid_sampled = [np.array(sublist) for sublist in valid_sampled] | ||
| scheduler_output = MagicMock() | ||
| scheduler_output.num_scheduled_tokens = [2, 1, 3] | ||
| positions = torch.tensor([0, 1, 2, 3, 4, 5]) | ||
| hidden_states = torch.randn(6, 4096) | ||
| num_scheduled = 6 | ||
|
|
||
| mock_attn_metadata = MagicMock() | ||
| mock_attn_metadata.slot_mapping = torch.tensor([0, 1, 2, 3, 4, 5]) | ||
| mock_attn_metadata.query_start_loc = torch.tensor([0, 2, 3, 6]) | ||
| mock_attn_metadata.block_tables = MagicMock() | ||
| self.proposer._get_eagle_atten_dict = MagicMock( | ||
| return_value={"layer_0": mock_attn_metadata}) | ||
|
|
||
| result = self.proposer.generate_token_ids( | ||
| valid_sampled_token_ids=valid_sampled, | ||
| scheduler_output=scheduler_output, | ||
| positions=positions, | ||
| num_scheduled_tokens=num_scheduled, | ||
| hidden_states=hidden_states, | ||
| ) | ||
|
|
||
| self.proposer._propose.assert_called_once() | ||
| self.assertEqual(result, [[1, 2], [3, 4], [5, 6]]) | ||
|
|
||
| def test_generate_token_ids_with_metadata(self): | ||
| valid_sampled = [[5], [6, 7], [8, 9, 10]] | ||
| valid_sampled = [np.array(sublist) for sublist in valid_sampled] | ||
| spec_metadata = MagicMock() | ||
| spec_metadata.num_draft_tokens = [2, 3, 4] | ||
|
|
||
| mock_attn_metadata = MagicMock() | ||
| mock_attn_metadata.slot_mapping = torch.tensor([0, 1, 2, 3, 4, 5]) | ||
| mock_attn_metadata.query_start_loc = torch.tensor([0, 1, 3, 6]) | ||
| mock_attn_metadata.block_tables = MagicMock() | ||
| self.proposer._get_eagle_atten_dict = MagicMock( | ||
| return_value={"layer_0": mock_attn_metadata}) | ||
| self.proposer._prepare_inputs = MagicMock( | ||
| return_value=(torch.tensor([0, 2, 5]), torch.tensor([1, 3, 5]))) | ||
|
|
||
| result = self.proposer.generate_token_ids( | ||
| valid_sampled_token_ids=valid_sampled, | ||
| spec_decode_metadata=spec_metadata, | ||
| positions=torch.randn(6, 1), | ||
| hidden_states=torch.randn(6, 4096), | ||
| ) | ||
|
|
||
| self.proposer._prepare_inputs.assert_called_once() | ||
| self.assertEqual(self.proposer._propose.call_count, 1) | ||
| self.assertEqual(len(result), 3) | ||
|
|
||
|
|
||
| class TestEagleProposerHelperMethods(TestBase): | ||
|
|
||
| def setUp(self): | ||
| self.vllm_config = MagicMock(spec=VllmConfig) | ||
| self.vllm_config.scheduler_config = MagicMock(max_num_seqs=3) | ||
| self.device = torch.device("cpu") | ||
| self.runner = MagicMock() | ||
| self.runner.input_batch = MagicMock() | ||
| self.runner.input_batch.req_ids = [0, 1, 2] | ||
| self.runner.arange_np = np.arange(10) | ||
| self.runner.input_batch.num_reqs = 3 | ||
|
|
||
| self.vllm_config.cache_config.block_size = 16 | ||
| self.vllm_config.scheduler_config.max_num_batched_tokens = 1024 | ||
| self.vllm_config.scheduler_config.max_num_seqs = 32 | ||
| self.vllm_config.model_config.dtype = torch.float16 | ||
| self.vllm_config.model_config.max_model_len = 2048 | ||
|
|
||
| self.proposer = EagleProposer(vllm_config=self.vllm_config, | ||
| device=self.device, | ||
| runner=self.runner) | ||
|
|
||
| def test_prepare_inputs(self): | ||
| self.proposer.token_arange_np = np.arange(10) | ||
| mock_attn = MagicMock() | ||
| mock_attn.slot_mapping = torch.tensor([0, 1, 2, 3, 4, 5]) | ||
| num_rejected = torch.tensor([1, 0, 1], device=self.device) | ||
|
|
||
| with patch.object(self.proposer, | ||
| '_prepare_inputs', | ||
| return_value=(torch.tensor([0, 2, 5]), | ||
| torch.tensor([1, 2, 4]))): | ||
| cu_num_tokens, indices = self.proposer._prepare_inputs( | ||
| mock_attn, num_rejected) | ||
| self.assertEqual(cu_num_tokens.tolist(), [0, 2, 5]) | ||
| self.assertEqual(indices.tolist(), [1, 2, 4]) | ||
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The current test for
_prepare_inputsis not effective as it patches the very method it intends to test. This means the test only verifies that the patch works, not the actual implementation of_prepare_inputs. This gives a false sense of test coverage for a critical piece of logic.I've provided a corrected version of the test that invokes the real
_prepare_inputsmethod and validates its output against expected values for a concrete scenario. This ensures the logic for calculating new token counts and indices after rejections is properly tested.