-
Notifications
You must be signed in to change notification settings - Fork 609
addrmsnorm_bias #4462
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
addrmsnorm_bias #4462
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
|
|
@@ -15,14 +15,146 @@ | |||||||||
| # This file is a part of the vllm-ascend project. | ||||||||||
| # | ||||||||||
|
|
||||||||||
| from typing import Optional, Tuple, Union, cast | ||||||||||
| from typing import Optional, Tuple, Union, cast, Dict, Any | ||||||||||
|
|
||||||||||
| import torch | ||||||||||
| from vllm.config import get_current_vllm_config | ||||||||||
| from vllm.forward_context import get_forward_context | ||||||||||
| from vllm.model_executor.layers.layernorm import GemmaRMSNorm, RMSNorm | ||||||||||
| from vllm.triton_utils import tl, triton | ||||||||||
| from functools import cache | ||||||||||
|
|
||||||||||
|
|
||||||||||
| @cache | ||||||||||
| def get_device_properties() -> Tuple[int, int]: | ||||||||||
| device = torch.npu.current_device() | ||||||||||
| device_properties: Dict[str, Any] = ( | ||||||||||
| triton.runtime.driver.active.utils.get_device_properties(device) | ||||||||||
| ) | ||||||||||
|
|
||||||||||
| num_aicore = device_properties.get("num_aicore", -1) | ||||||||||
| num_vectorcore = device_properties.get("num_vectorcore", -1) | ||||||||||
|
|
||||||||||
| assert num_aicore > 0 and num_vectorcore > 0, "Failed to detect device properties." | ||||||||||
| return num_aicore, num_vectorcore | ||||||||||
|
|
||||||||||
|
|
||||||||||
| @triton.heuristics({ | ||||||||||
| "HAS_BIAS": lambda args: args["B"] is not None | ||||||||||
| }) | ||||||||||
| @triton.heuristics({"HAS_Z": lambda args: args["Z"] is not None}) | ||||||||||
| @triton.jit | ||||||||||
| def rms_norm_fwd_kernel( | ||||||||||
| X, # pointer to the input | ||||||||||
| Y, # pointer to the output | ||||||||||
| W, # pointer to the weights | ||||||||||
| B, # pointer to the biases | ||||||||||
| Z, # pointer to the residual | ||||||||||
| Z_Out, # pointer to the residual output | ||||||||||
| stride_x_row, # how much to increase the pointer when moving by 1 row | ||||||||||
| stride_y_row, | ||||||||||
| stride_z_row, | ||||||||||
| stride_z_out_row, | ||||||||||
| n_rows, # number of rows in X_base | ||||||||||
| n_cols, # number of columns in X_base | ||||||||||
| eps, # epsilon to avoid division by zero | ||||||||||
| BLOCK_N: tl.constexpr, | ||||||||||
| HAS_BIAS: tl.constexpr, | ||||||||||
| HAS_Z: tl.constexpr, | ||||||||||
| ): | ||||||||||
| # Map the program id to the row of X_base and Y_base it should compute. | ||||||||||
| # Each program computes a row of X_base and store to Y_base | ||||||||||
| row_start = tl.program_id(0) | ||||||||||
| for row_idx in tl.range(row_start, n_rows, tl.num_programs(0)): | ||||||||||
| start_x = X + row_idx * stride_x_row | ||||||||||
| start_y = Y + row_idx * stride_y_row | ||||||||||
| if HAS_Z: | ||||||||||
| start_z = Z + row_idx * stride_z_row | ||||||||||
| start_z_out = Z_Out + row_idx * stride_z_out_row | ||||||||||
| offsets = tl.arange(0, BLOCK_N) | ||||||||||
| mask = offsets < n_cols | ||||||||||
| x = tl.load(start_x + offsets, mask=mask, other=0.0) | ||||||||||
| original_dtype = x.dtype | ||||||||||
| x = x.to(tl.float32) | ||||||||||
| if HAS_Z: | ||||||||||
| z = tl.load(start_z + offsets, mask=mask, other=0.0).to(tl.float32) | ||||||||||
| x = x + z | ||||||||||
| tl.store(start_z_out + offsets, x, mask=mask) | ||||||||||
| var = tl.sum(x * x, axis=0) / n_cols | ||||||||||
| rstd = 1 / tl.sqrt(var + eps) | ||||||||||
| w = tl.load(W + offsets, mask=mask).to(tl.float32) | ||||||||||
| if HAS_BIAS: | ||||||||||
| bias = tl.load(B + offsets, mask=mask).to(tl.float32) | ||||||||||
|
|
||||||||||
| x_hat = x * rstd | ||||||||||
| # Cast normalized x back to original data type to preserve precision contract | ||||||||||
| x_hat = x_hat.to(original_dtype) | ||||||||||
| y = x_hat * w | ||||||||||
| if HAS_BIAS: | ||||||||||
| y = y + bias | ||||||||||
| tl.store(start_y + offsets, y, mask=mask) | ||||||||||
|
|
||||||||||
|
|
||||||||||
| def _rms_norm_fwd_triton( | ||||||||||
| x, | ||||||||||
| weight, | ||||||||||
| eps, | ||||||||||
| residual=None, | ||||||||||
| bias=None, | ||||||||||
| out=None, | ||||||||||
| residual_out=None, | ||||||||||
| ): | ||||||||||
| M, N = x.shape | ||||||||||
| assert x.stride(-1) == 1 | ||||||||||
| assert weight.shape == (N,) | ||||||||||
| assert weight.stride(-1) == 1 | ||||||||||
| # logger.info(f"bias is {bias}") | ||||||||||
| if bias is not None: | ||||||||||
| assert bias.stride(-1) == 1 | ||||||||||
| assert bias.shape == (N,) | ||||||||||
| if residual is not None: | ||||||||||
| assert residual.shape == x.shape | ||||||||||
| assert residual.stride(-1) == 1 | ||||||||||
| if residual_out is None: | ||||||||||
| residual_out = torch.empty_like(x) | ||||||||||
| # allocate output | ||||||||||
| if out is not None: | ||||||||||
| assert out.shape == x.shape | ||||||||||
| else: | ||||||||||
| out = torch.empty_like(x) | ||||||||||
| assert out.stride(-1) == 1 | ||||||||||
| # Less than 64KB per feature: enqueue fused kernel | ||||||||||
| MAX_FUSED_SIZE = 65536 // x.element_size() | ||||||||||
| BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N)) | ||||||||||
| if N > BLOCK_N: | ||||||||||
| raise RuntimeError( | ||||||||||
| "This rms norm doesn't support feature dim >= 64KB.") | ||||||||||
| # heuristics for number of warps | ||||||||||
| num_warps = min(max(BLOCK_N // 256, 1), 8) | ||||||||||
| # _, num_vectorcore = get_device_properties() | ||||||||||
| num_vectorcore = 40 | ||||||||||
| grid = (M if M < num_vectorcore else num_vectorcore,) | ||||||||||
| # with torch.npu.device(x.device.index): | ||||||||||
| rms_norm_fwd_kernel[grid]( | ||||||||||
| x, | ||||||||||
| out, | ||||||||||
| weight, | ||||||||||
| bias, | ||||||||||
| residual, | ||||||||||
| residual_out, | ||||||||||
| x.stride(0), | ||||||||||
| out.stride(0), | ||||||||||
| residual.stride(0) if residual is not None else None, | ||||||||||
| residual_out.stride(0) if residual is not None else None, | ||||||||||
|
Comment on lines
+147
to
+148
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Passing
Suggested change
|
||||||||||
| M, | ||||||||||
| N, | ||||||||||
| eps, | ||||||||||
| BLOCK_N=BLOCK_N, | ||||||||||
| num_warps=num_warps, | ||||||||||
| # multibuffer=True, | ||||||||||
| ) | ||||||||||
| return out, residual_out | ||||||||||
|
|
||||||||||
| def _addrmsnorm_forward_oot( | ||||||||||
| self, | ||||||||||
| x: torch.Tensor, | ||||||||||
|
|
@@ -30,12 +162,11 @@ | |||||||||
| layer: Optional[torch.nn.Module] = None, | ||||||||||
| bias: Optional[torch.nn.Parameter] = None, | ||||||||||
| ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: | ||||||||||
| import torch_npu | ||||||||||
|
Check failure on line 165 in vllm_ascend/ops/layernorm.py
|
||||||||||
|
|
||||||||||
| from vllm_ascend.utils import AscendDeviceType, get_ascend_device_type | ||||||||||
| from vllm_ascend.utils import is_310p | ||||||||||
|
|
||||||||||
| if layer is not None and get_ascend_device_type( | ||||||||||
| ) != AscendDeviceType._310P: | ||||||||||
| if layer is not None and not is_310p(): | ||||||||||
| layer_cls_name = layer.__class__.__name__ | ||||||||||
| try: | ||||||||||
| weight_prefetch_method = get_forward_context( | ||||||||||
|
|
@@ -68,17 +199,14 @@ | |||||||||
| ) | ||||||||||
|
|
||||||||||
| else: | ||||||||||
| if get_ascend_device_type() == AscendDeviceType._310P: | ||||||||||
| if is_310p(): | ||||||||||
| orig_dtype = residual.dtype | ||||||||||
| x = x + residual.to(x.dtype) | ||||||||||
| residual = x.to(orig_dtype) | ||||||||||
| x, _ = torch_npu.npu_rms_norm(x, self.weight, | ||||||||||
| self.variance_epsilon) | ||||||||||
| else: | ||||||||||
| x, _, residual = torch_npu.npu_add_rms_norm( | ||||||||||
| x, residual, self.weight, self.variance_epsilon) | ||||||||||
| if bias is not None: | ||||||||||
| x.add_(bias) | ||||||||||
| x, residual = _rms_norm_fwd_triton(x, self.weight, self.variance_epsilon, residual, bias) | ||||||||||
| torch.ops.vllm.maybe_wait_prefetch_done(x) | ||||||||||
| return x, residual | ||||||||||
|
|
||||||||||
|
|
@@ -115,10 +243,12 @@ | |||||||||
| self, x, residual, self.next_need_quant_fusion_linear, | ||||||||||
| self.bias) | ||||||||||
| return x, residual | ||||||||||
| x, residual = torch_npu.npu_rms_norm(x, self.weight, | ||||||||||
| self.variance_epsilon) | ||||||||||
|
|
||||||||||
| if self.bias is not None: | ||||||||||
| x.add_(self.bias) | ||||||||||
| x, _ = _rms_norm_fwd_triton(x, self.weight, self.variance_epsilon, None, self.bias) | ||||||||||
| else: | ||||||||||
| x, _ = torch_npu.npu_rms_norm(x, self.weight, | ||||||||||
| self.variance_epsilon) | ||||||||||
| return x | ||||||||||
|
|
||||||||||
| @property | ||||||||||
|
|
@@ -196,9 +326,9 @@ | |||||||||
| ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: | ||||||||||
| import torch_npu | ||||||||||
|
|
||||||||||
| from vllm_ascend.utils import AscendDeviceType, get_ascend_device_type | ||||||||||
| from vllm_ascend.utils import is_310p | ||||||||||
| if residual is not None: | ||||||||||
|
Check failure on line 330 in vllm_ascend/ops/layernorm.py
|
||||||||||
| if get_ascend_device_type() == AscendDeviceType._310P: | ||||||||||
| if is_310p(): | ||||||||||
| orig_dtype = residual.dtype | ||||||||||
| x = x + residual.to(x.dtype) | ||||||||||
| residual = x.to(orig_dtype) | ||||||||||
|
|
||||||||||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The
num_vectorcoreis hardcoded to 40. The code should use theget_device_properties()function to dynamically fetch this value, as intended by the commented-out line. Hardcoding device properties makes the code less portable and may lead to suboptimal performance on different hardware.