Skip to content

An extensible, state of the art columnar file format. Formerly at @spiraldb, now part of the Linux Foundation.

License

Notifications You must be signed in to change notification settings

vortex-data/vortex

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸŒͺ️ Vortex

Build Status OpenSSF Best Practices Documentation CodSpeed Badge Crates.io PyPI - Version Maven - Version

πŸ“š Documentation | πŸ“Š Performance Benchmarks

Overview

Vortex is a next-generation columnar file format and toolkit designed for high-performance data analytics. It provides:

  • ⚑️ Blazing Fast Performance

    • 100-200x faster random access reads than Apache Parquet
    • 2-10x faster scans with similar compression ratios and write throughput
    • Efficient support for wide tables with zero-copy/zero-parse metadata
  • πŸ”§ Extensible Architecture

    • Modeled after Apache DataFusion's extensible approach
    • Pluggable encoding system
    • Zero-copy compatibility with Apache Arrow

🚧 Development Status: This project is under active development. APIs and file formats may change, and some features are still being implemented.

Key Features

Core Capabilities

  • ✨ Logical Types - Clean separation between logical schema and physical layout
  • πŸ”„ Zero-Copy Arrow Integration - Seamless conversion to/from Apache Arrow arrays
  • 🧩 Extensible Encodings - Pluggable physical layouts with built-in optimizations
  • πŸ“¦ Cascading Compression - Support for nested encoding schemes
  • πŸš€ High-Performance Computing - Optimized compute kernels for encoded data
  • πŸ“Š Rich Statistics - Lazy-loaded summary statistics for optimization

Technical Architecture

Logical vs Physical Design

Vortex strictly separates logical and physical concerns:

  • Logical Layer: Defines data types and schema
  • Physical Layer: Handles encoding and storage implementation
  • Built-in Encodings: Compatible with Apache Arrow's memory format
  • Extension Encodings: Optimized compression schemes (RLE, dictionary, etc.)

Quick Start

Installation

Rust Crate

All features are exported through the main vortex crate.

cargo add vortex

Python Package

uv add vortex-array

Command Line UI (vx)

For browsing the structure of Vortex files, you can use the vx command-line tool.

# Install latest release
cargo install vortex-tui --locked

# Or build from source
cargo install --path vortex-tui --locked

# Usage
vx browse <file>

Development Setup

Prerequisites (macOS)

# Optional but recommended dependencies
brew install flatbuffers protobuf  # For .fbs and .proto files
brew install duckdb               # For benchmarks

# Install Rust toolchain
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
# or
brew install rustup

# Initialize submodules
git submodule update --init --recursive

# Setup dependencies with uv
uv sync --all-packages

Performance Optimization

For optimal performance, we suggest using MiMalloc:

#[global_allocator]
static GLOBAL_ALLOC: MiMalloc = MiMalloc;

Project Information

License

Licensed under the Apache License, Version 2.0.

Governance

Vortex is an independent open-source project and not controlled by any single company. The Vortex Project is a sub-project of the Linux Foundation Projects. The governance model is documented in CONTRIBUTING.md and is subject to the terms of the Technical Charter.

Contributing

See CONTRIBUTING.md for guidelines.

Reporting Vulnerabilities

If you discovery a security vulnerability, please email [email protected].

Trademarks

Copyright Β© Vortex a Series of LF Projects, LLC. For terms of use, trademark policy, and other project policies please see https://lfprojects.org

Acknowledgments πŸ†

This project builds upon groundbreaking work from the academic and open-source communities:

Key Research Papers

Open Source Inspiration

Thanks to all contributors who have shared their knowledge and code with the community! πŸš€