yolov11 rk3588 部署版本,将DFL放在后处理中,转换工具版本 rknn_toolkit2-2.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.
导出onnx、转rknn流程说明【yolov11 部署瑞芯微rk3588、RKNN部署工程难度小、模型推理速度快】
1)编译
cd examples/rknn_yolov11_demo_dfl_open
bash build-linux_RK3588.sh
2)运行
cd install/rknn_yolo_demo_Linux
./rknn_yolo_demo
注意:修改模型、测试图像、保存图像的路径,修改文件为src下的main.cc
int main(int argc, char **argv)
{
char model_path[256] = "/home/zhangqian/rknn/examples/rknn_yolov11_demo_dfl_open/model/RK3588/yolov11n_80class_ZQ.rknn";
char image_path[256] = "/home/zhangqian/rknn/examples/rknn_yolov11_demo_dfl_open/test.jpg";
char save_image_path[256] = "/home/zhangqian/rknn/examples/rknn_yolov11_demo_dfl_open/test_result.jpg";
detect(model_path, image_path, save_image_path);
return 0;
}
把板端模型推理和后处理时耗也附上,供参考,使用的芯片rk3588,模型输入640x640。