Skip to content

xw675/Pytorch-Learning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

61 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Pytorch Learning

Simple Convolutional Neural Network (CNN) for CIFAR-10 image classification.

  • Dataset: CIFAR-10 (10 classes of 32×32 RGB images)
  • Model: Custom CNN with convolutional blocks, batch normalization, and dropout

🚀 Model Architecture

The network consists of:

  1. Block 1

    • Conv2d(3→32, kernel=3, padding=1)
    • BatchNorm2d(32)
    • ReLU
    • MaxPool2d(2)
  2. Block 2

    • Conv2d(32→32, kernel=3, padding=1)
    • BatchNorm2d(32)
    • ReLU
    • MaxPool2d(2)
  3. Global Downsampling

    • Conv2d(32→64, kernel=3, padding=1)
    • BatchNorm2d(64)
    • ReLU
    • AdaptiveAvgPool2d(output_size=(2,2))
  4. Deep Feature Block

    • Conv2d(64→128, kernel=3, padding=1)
    • Conv2d(128→256, kernel=3, padding=1)
    • BatchNorm2d(256)
    • ReLU
  5. Classification Head

    • Flatten
    • Dropout(p=0.2)
    • Linear(256×2×2 → 256)
    • ReLU
    • Dropout(p=0.3)
    • Linear(256 → 64)
    • Linear(64 → 10)
    • Output logits for 10 CIFAR-10 classes

📈 Results

Accuracy: 86.41%

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages