How to Get Started with the Model
import torch
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftModel, PeftConfig
config = PeftConfig.from_pretrained("yamete4/codegen-350M-mono-QLoRa-flytech")
model = AutoModelForCausalLM.from_pretrained("shpotes/codegen-350M-mono",
quantization_config=BitsAndBytesConfig(config),)
peft_model = PeftModel.from_pretrained(model, "yamete4/codegen-350M-mono-QLoRa-flytech")
text = "Help me manage my subscriptions!?"
inputs = tokenizer(text, return_tensors="pt").to(0)
outputs = perf_model.generate(inputs.input_ids, max_new_tokens=250, do_sample=False)
print(tokenizer.decode(outputs[0], skip_special_tokens=False))
Framework versions
- PEFT 0.9.0
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for yamete4/codegen-350M-mono-QLoRa-flytech
Base model
shpotes/codegen-350M-mono