论文: TS2Vec: Towards Universal Representation of Time Series
参考repo: https://github.com/yuezhihan/ts2vec
论文结构如上图所示,TS2Vec执行对比分析在增强的上下文视图上以分层方式学习,这使得能够针对每个对象进行鲁棒的上下文表示时间戳。
从一个in序列中随机抽取两个重叠的子序列-把时间序列放在xi身上,鼓励语境的一致性公共段上的表示。原始输入被馈送输入到编码器中,该编码器与时间对比度损失和实例对比度损失。总数损失在分层框架中的多个尺度上求和工作 ,实验表明,这种结构模型能得到显著的优越特性。
最后在此非常感谢yuezhihan
等人贡献的Ts2Vec,提高了本repo复现论文的效率。
aistudio体验教程: 地址
格式如下:
- 数据集大小:两个有关时间序列的csv文件,分别为ETTh1和ETTm1
- 数据集下载链接:因为文件小,直接在本地文件夹可找到
- 数据格式:csv
-
硬件:无要求
-
框架:
- PaddlePaddle >= 2.2.0
- Paddlets >= 0.1.0
-
安装指令:
python setup.py install
数据在datasets文件夹下
预训练模型准备好了,在./output文件夹下
训练命令:
python -u tools/train.py ETTh1 forecast_univar --loader forecast_csv_univar --repr-dims 320 --train_model_name latest.pdparams --epochs=200
超参数在tools/train.py已经解释的很清楚
训练结果:
ETTh1:
![9099c1d4515fe80482ced3c9c0ebcfb](C:\Users\ADMINI~1\AppData\Local\Temp\WeChat Files\9099c1d4515fe80482ced3c9c0ebcfb.jpg)
ETTh1:
python -u tools/eval.py ETTh1 forecast_univar --loader forecast_csv_univar --repr-dims 320 --train_model_name latest.pdparams --epochs=200
![097af1bc08f5af9617bdb873d8dd05f](C:\Users\ADMINI~1\AppData\Local\Temp\WeChat Files\097af1bc08f5af9617bdb873d8dd05f.png)
ETTm1:
python -u tools/eval.py ETTm1 forecast_univar --loader forecast_csv_univar --repr-dims 320 --train_model_name latest.pdparams --epochs=200
本项目的发布受Apache 2.0 license许可认证。
论文: TS2Vec: Towards Universal Representation of Time Series
参考repo: https://github.com/yuezhihan/ts2vec
再次衷心的致谢百度飞桨给予我这次宝贵的经验,以及原作者repo的精巧编写。
不胜感激!