Check out more codes on our github repository!

IDM-VTON : Improving Diffusion Models for Authentic Virtual Try-on in the Wild

This is an official implementation of paper 'Improving Diffusion Models for Authentic Virtual Try-on in the Wild'

πŸ€— Try our huggingface Demo

teaser  teaser2 

TODO LIST

  • demo model
  • inference code
  • training code

Acknowledgements

For the demo, GPUs are supported from zerogpu, and auto masking generation codes are based on OOTDiffusion and DCI-VTON.
Parts of the code are based on IP-Adapter.

Citation

@article{choi2024improving,
  title={Improving Diffusion Models for Virtual Try-on},
  author={Choi, Yisol and Kwak, Sangkyung and Lee, Kyungmin and Choi, Hyungwon and Shin, Jinwoo},
  journal={arXiv preprint arXiv:2403.05139},
  year={2024}
}

License

The codes and checkpoints in this repository are under the CC BY-NC-SA 4.0 license.

Downloads last month
24,232
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using yisol/IDM-VTON 100