-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
63c864e
commit b985a23
Showing
18 changed files
with
692 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,126 @@ | ||
import warnings | ||
import torch | ||
import scipy.sparse as sp | ||
import numpy as np | ||
import os | ||
import torch_geometric.transforms as T | ||
from torch_geometric.datasets import Planetoid, WikipediaNetwork, Actor, WebKB, Amazon, Coauthor, WikiCS | ||
from torch_geometric.utils import remove_self_loops | ||
|
||
warnings.simplefilter("ignore") | ||
|
||
|
||
def get_split(num_samples: int, train_ratio: float = 0.1, test_ratio: float = 0.8, num_splits: int = 10): | ||
|
||
assert train_ratio + test_ratio < 1 | ||
train_size = int(num_samples * train_ratio) | ||
test_size = int(num_samples * test_ratio) | ||
|
||
trains, vals, tests = [], [], [] | ||
|
||
for _ in range(num_splits): | ||
indices = torch.randperm(num_samples) | ||
|
||
train_mask = torch.zeros(num_samples, dtype=torch.bool) | ||
train_mask.fill_(False) | ||
train_mask[indices[:train_size]] = True | ||
|
||
test_mask = torch.zeros(num_samples, dtype=torch.bool) | ||
test_mask.fill_(False) | ||
test_mask[indices[train_size: test_size + train_size]] = True | ||
|
||
val_mask = torch.zeros(num_samples, dtype=torch.bool) | ||
val_mask.fill_(False) | ||
val_mask[indices[test_size + train_size:]] = True | ||
|
||
trains.append(train_mask.unsqueeze(1)) | ||
vals.append(val_mask.unsqueeze(1)) | ||
tests.append(test_mask.unsqueeze(1)) | ||
|
||
train_mask_all = torch.cat(trains, 1) | ||
val_mask_all = torch.cat(vals, 1) | ||
test_mask_all = torch.cat(tests, 1) | ||
|
||
return train_mask_all, val_mask_all, test_mask_all | ||
|
||
|
||
def get_structural_encoding(edges, nnodes, str_enc_dim=16): | ||
|
||
row = edges[0, :].numpy() | ||
col = edges[1, :].numpy() | ||
data = np.ones_like(row) | ||
|
||
A = sp.csr_matrix((data, (row, col)), shape=(nnodes, nnodes)) | ||
D = (np.array(A.sum(1)).squeeze()) ** -1.0 | ||
|
||
Dinv = sp.diags(D) | ||
RW = A * Dinv | ||
M = RW | ||
|
||
SE = [torch.from_numpy(M.diagonal()).float()] | ||
M_power = M | ||
for _ in range(str_enc_dim - 1): | ||
M_power = M_power * M | ||
SE.append(torch.from_numpy(M_power.diagonal()).float()) | ||
SE = torch.stack(SE, dim=-1) | ||
return SE | ||
|
||
|
||
def load_data(dataset_name): | ||
|
||
path = os.path.join(os.path.dirname(os.path.realpath(__file__)), '.', 'data', dataset_name) | ||
|
||
if dataset_name in ['cora', 'citeseer', 'pubmed']: | ||
dataset = Planetoid(path, dataset_name) | ||
elif dataset_name in ['chameleon']: | ||
dataset = WikipediaNetwork(path, dataset_name) | ||
elif dataset_name in ['squirrel']: | ||
dataset = WikipediaNetwork(path, dataset_name, transform=T.NormalizeFeatures()) | ||
elif dataset_name in ['actor']: | ||
dataset = Actor(path) | ||
elif dataset_name in ['cornell', 'texas', 'wisconsin']: | ||
dataset = WebKB(path, dataset_name) | ||
elif dataset_name in ['computers', 'photo']: | ||
dataset = Amazon(path, dataset_name, transform=T.NormalizeFeatures()) | ||
elif dataset_name in ['cs', 'physics']: | ||
dataset = Coauthor(path, dataset_name, transform=T.NormalizeFeatures()) | ||
elif dataset_name in ['wikics']: | ||
dataset = WikiCS(path) | ||
|
||
data = dataset[0] | ||
|
||
edges = remove_self_loops(data.edge_index)[0] | ||
|
||
features = data.x | ||
[nnodes, nfeats] = features.shape | ||
nclasses = torch.max(data.y).item() + 1 | ||
|
||
if dataset_name in ['computers', 'photo', 'cs', 'physics', 'wikics']: | ||
train_mask, val_mask, test_mask = get_split(nnodes) | ||
else: | ||
train_mask, val_mask, test_mask = data.train_mask, data.val_mask, data.test_mask | ||
|
||
if len(train_mask.shape) < 2: | ||
train_mask = train_mask.unsqueeze(1) | ||
val_mask = val_mask.unsqueeze(1) | ||
test_mask = test_mask.unsqueeze(1) | ||
|
||
labels = data.y | ||
|
||
path = '../data/se/{}'.format(dataset_name) | ||
if not os.path.exists(path): | ||
os.makedirs(path) | ||
file_name = path + '/{}_{}.pt'.format(dataset_name, 16) | ||
if os.path.exists(file_name): | ||
se = torch.load(file_name) | ||
# print('Load exist structural encoding.') | ||
else: | ||
print('Computing structural encoding...') | ||
se = get_structural_encoding(edges, nnodes) | ||
torch.save(se, file_name) | ||
print('Done. The structural encoding is saved as: {}.'.format(file_name)) | ||
|
||
return features, edges, se, train_mask, val_mask, test_mask, labels, nnodes, nfeats | ||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,161 @@ | ||
import argparse | ||
import numpy as np | ||
import torch | ||
import torch.nn.functional as F | ||
import dgl | ||
import random | ||
|
||
from data_loader import load_data | ||
from model import * | ||
from utils import * | ||
|
||
EOS = 1e-10 | ||
|
||
|
||
def setup_seed(seed): | ||
torch.manual_seed(seed) | ||
torch.cuda.manual_seed_all(seed) | ||
torch.backends.cudnn.deterministic = True | ||
np.random.seed(seed) | ||
random.seed(seed) | ||
dgl.seed(seed) | ||
dgl.random.seed(seed) | ||
|
||
|
||
def train_cl(cl_model, discriminator, optimizer_cl, features, str_encodings, edges): | ||
|
||
cl_model.train() | ||
discriminator.eval() | ||
|
||
adj_1, adj_2, weights_lp, _ = discriminator(torch.cat((features, str_encodings), 1), edges) | ||
features_1, adj_1, features_2, adj_2 = augmentation(features, adj_1, features, adj_2, args, cl_model.training) | ||
cl_loss = cl_model(features_1, adj_1, features_2, adj_2) | ||
|
||
optimizer_cl.zero_grad() | ||
cl_loss.backward() | ||
optimizer_cl.step() | ||
|
||
return cl_loss.item() | ||
|
||
|
||
def train_discriminator(cl_model, discriminator, optimizer_disc, features, str_encodings, edges, args): | ||
|
||
cl_model.eval() | ||
discriminator.train() | ||
|
||
adj_1, adj_2, weights_lp, weights_hp = discriminator(torch.cat((features, str_encodings), 1), edges) | ||
rand_np = generate_random_node_pairs(features.shape[0], edges.shape[1]) | ||
psu_label = torch.ones(edges.shape[1]).cuda() | ||
|
||
embedding = cl_model.get_embedding(features, adj_1, adj_2) | ||
edge_emb_sim = F.cosine_similarity(embedding[edges[0]], embedding[edges[1]]) | ||
|
||
rnp_emb_sim_lp = F.cosine_similarity(embedding[rand_np[0]], embedding[rand_np[1]]) | ||
loss_lp = F.margin_ranking_loss(edge_emb_sim, rnp_emb_sim_lp, psu_label, margin=args.margin_hom, reduction='none') | ||
loss_lp *= torch.relu(weights_lp - 0.5) | ||
|
||
rnp_emb_sim_hp = F.cosine_similarity(embedding[rand_np[0]], embedding[rand_np[1]]) | ||
loss_hp = F.margin_ranking_loss(rnp_emb_sim_hp, edge_emb_sim, psu_label, margin=args.margin_het, reduction='none') | ||
loss_hp *= torch.relu(weights_hp - 0.5) | ||
|
||
rank_loss = (loss_lp.mean() + loss_hp.mean()) / 2 | ||
|
||
optimizer_disc.zero_grad() | ||
rank_loss.backward() | ||
optimizer_disc.step() | ||
|
||
return rank_loss.item() | ||
|
||
|
||
def main(args): | ||
|
||
setup_seed(0) | ||
features, edges, str_encodings, train_mask, val_mask, test_mask, labels, nnodes, nfeats = load_data(args.dataset) | ||
results = [] | ||
|
||
for trial in range(args.ntrials): | ||
|
||
setup_seed(trial) | ||
|
||
cl_model = GCL(nlayers=args.nlayers_enc, nlayers_proj=args.nlayers_proj, in_dim=nfeats, emb_dim=args.emb_dim, | ||
proj_dim=args.proj_dim, dropout=args.dropout, sparse=args.sparse, batch_size=args.cl_batch_size).cuda() | ||
cl_model.set_mask_knn(features.cpu(), k=args.k, dataset=args.dataset) | ||
discriminator = Edge_Discriminator(nnodes, nfeats + str_encodings.shape[1], args.alpha, args.sparse).cuda() | ||
|
||
optimizer_cl = torch.optim.Adam(cl_model.parameters(), lr=args.lr_gcl, weight_decay=args.w_decay) | ||
optimizer_discriminator = torch.optim.Adam(discriminator.parameters(), lr=args.lr_disc, weight_decay=args.w_decay) | ||
|
||
features = features.cuda() | ||
str_encodings = str_encodings.cuda() | ||
edges = edges.cuda() | ||
|
||
best_acc_val = 0 | ||
best_acc_test = 0 | ||
|
||
for epoch in range(1, args.epochs + 1): | ||
|
||
for _ in range(args.cl_rounds): | ||
cl_loss = train_cl(cl_model, discriminator, optimizer_cl, features, str_encodings, edges) | ||
rank_loss = train_discriminator(cl_model, discriminator, optimizer_discriminator, features, str_encodings, edges, args) | ||
|
||
print("[TRAIN] Epoch:{:04d} | CL Loss {:.4f} | RANK loss:{:.4f} ".format(epoch, cl_loss, rank_loss)) | ||
|
||
if epoch % args.eval_freq == 0: | ||
cl_model.eval() | ||
discriminator.eval() | ||
adj_1, adj_2, _, _ = discriminator(torch.cat((features, str_encodings), 1), edges) | ||
embedding = cl_model.get_embedding(features, adj_1, adj_2) | ||
cur_split = 0 if (train_mask.shape[1]==1) else (trial % train_mask.shape[1]) | ||
acc_test, acc_val = eval_test_mode(embedding, labels, train_mask[:, cur_split], | ||
val_mask[:, cur_split], test_mask[:, cur_split]) | ||
print( | ||
'[TEST] Epoch:{:04d} | CL loss:{:.4f} | RANK loss:{:.4f} | VAL ACC:{:.2f} | TEST ACC:{:.2f}'.format( | ||
epoch, cl_loss, rank_loss, acc_val, acc_test)) | ||
|
||
if acc_val > best_acc_val: | ||
best_acc_val = acc_val | ||
best_acc_test = acc_test | ||
|
||
results.append(best_acc_test) | ||
|
||
print('\n[FINAL RESULT] Dataset:{} | Run:{} | ACC:{:.2f}+-{:.2f}'.format(args.dataset, args.ntrials, np.mean(results), | ||
np.std(results))) | ||
|
||
if __name__ == '__main__': | ||
parser = argparse.ArgumentParser() | ||
|
||
# ESSENTIAL | ||
parser.add_argument('-dataset', type=str, default='cornell', | ||
choices=['cora', 'citeseer', 'pubmed', 'chameleon', 'squirrel', 'actor', 'cornell', | ||
'texas', 'wisconsin', 'computers', 'photo', 'cs', 'physics', 'wikics']) | ||
parser.add_argument('-ntrials', type=int, default=10) | ||
parser.add_argument('-sparse', type=int, default=0) | ||
parser.add_argument('-eval_freq', type=int, default=20) | ||
parser.add_argument('-epochs', type=int, default=400) | ||
parser.add_argument('-lr_gcl', type=float, default=0.001) | ||
parser.add_argument('-lr_disc', type=float, default=0.001) | ||
parser.add_argument('-cl_rounds', type=int, default=2) | ||
parser.add_argument('-w_decay', type=float, default=0.0) | ||
parser.add_argument('-dropout', type=float, default=0.5) | ||
|
||
# DISC Module - Hyper-param | ||
parser.add_argument('-alpha', type=float, default=0.1) | ||
parser.add_argument('-margin_hom', type=float, default=0.5) | ||
parser.add_argument('-margin_het', type=float, default=0.5) | ||
|
||
# GRL Module - Hyper-param | ||
parser.add_argument('-nlayers_enc', type=int, default=2) | ||
parser.add_argument('-nlayers_proj', type=int, default=1, choices=[1, 2]) | ||
parser.add_argument('-emb_dim', type=int, default=128) | ||
parser.add_argument('-proj_dim', type=int, default=128) | ||
parser.add_argument('-cl_batch_size', type=int, default=0) | ||
parser.add_argument('-k', type=int, default=20) | ||
parser.add_argument('-maskfeat_rate_1', type=float, default=0.1) | ||
parser.add_argument('-maskfeat_rate_2', type=float, default=0.5) | ||
parser.add_argument('-dropedge_rate_1', type=float, default=0.5) | ||
parser.add_argument('-dropedge_rate_2', type=float, default=0.1) | ||
|
||
args = parser.parse_args() | ||
|
||
print(args) | ||
main(args) |
Oops, something went wrong.