Skip to content

yohanesgultom/id-text-classifier

Repository files navigation

Indonesian Text Classifer

Simple Indonesian text classifier using Sklearn Pipeline. Two models are currently available:

  1. TF-IDF vectorization with SGD Classifier (linear SVM) (default) [3]: 61% F1-score with small model size (< 800 KB)
  2. Word2Vec x TF-IDF vectorization with RBF SVM [4]: 77% F1-score but with huge model size (> 1 GB) due to encapsulation of FastText pretrained word vectors (> 750 MB)

Dependencies

  • Python >= 3.x
  • Sqlite3

Usage

Training

  1. Install dependencies pip install -r requirements.txt
  2. Put datasets in dataset_labeled.csv
  3. Run python train.py. Example:
$ python train.py

Cross-validating..
Classifier: SGDClassifier

No      test_pos_f1     test_pos_precision      test_pos_recall test_neg_f1     test_neg_precision      test_neg_recall
0       0.625   1.0     0.4545  0.9     0.8182  1.0
1       0.7778  1.0     0.6364  0.931   0.871   1.0
2       0.6667  0.8571  0.5455  0.8966  0.8387  0.963
3       0.5333  1.0     0.3636  0.8852  0.7941  1.0
4       0.625   1.0     0.4545  0.9     0.8182  1.0
5       0.8182  0.8182  0.8182  0.9259  0.9259  0.9259
6       0.7619  0.8889  0.6667  0.9091  0.8621  0.9615
7       0.1333  0.25    0.0909  0.7797  0.697   0.8846

Avg     0.6176  0.8518  0.5038  0.8909  0.8281  0.9669

Training using Word2Vec

  1. Download Indonesian Wikipedia word2vec model from Facebook Research wiki.id.vec and put it in the same directory as train.py
  2. Put datasets in dataset_labeled.csv
  3. Run python train.py -m w2v-rbfsvm
  4. Run python train.py -m w2v-rbfsvm -e dataset_labeled.vec to use custom embedding file trained using word2vec.py
Cross-validating..
Classifier: SVC

No      test_pos_f1     test_pos_precision      test_pos_recall test_neg_f1     test_neg_precision      test_neg_recall
0       0.8421  1.0     0.7273  0.9474  0.9     1.0
1       0.8421  1.0     0.7273  0.9474  0.9     1.0
2       0.8     0.8889  0.7273  0.9286  0.8966  0.963
3       0.625   1.0     0.4545  0.9     0.8182  1.0
4       0.9     1.0     0.8182  0.9643  0.931   1.0
5       0.8696  0.8333  0.9091  0.9434  0.9615  0.9259
6       0.8696  0.9091  0.8333  0.9434  0.9259  0.9615
7       0.4286  1.0     0.2727  0.8667  0.7647  1.0

Avg     0.7721  0.9539  0.6837  0.9301  0.8872  0.9813

You can train your own word2vec using python word2vec.py by putting training data (sentences) in first column of dataset_labeled.csv

Testing

  1. Do training or obtain model.pkl (and put it in same location as test.py)
  2. Install dependencies (if you have not) pip install -r requirements.txt
  3. Run python test.py "sentences_1" "sentences_2" "sentences_n". Example:
$ python test.py "Harga Gabah Jatuh karena Hujan Berkepanjangan" "Donatella Klaim Film Serial Pembunuhan Gianni Versace Fiktif"

Preprocessing..
100% (2 of 2) |########################################################################| Elapsed Time: 0:00:00 Time: 0:00:00
Prediction(s):
Harga Gabah Jatuh karena Hujan Berkepanjangan (1)
Donatella Klaim Film Serial Pembunuhan Gianni Versace Fiktif (0)

Crawling titles from website

To automatically crawl titles (and links) from website, run classification and store positive results use crawler.py:

  1. Copy .config.example to .config
  2. Run python crawler.py

Post crawled title links to facebook

To automatically post crawled links from website, use fb.py:

  1. Copy .config.example to .config and replace all Facebook config with valid values
  2. Run python fb.py

To get token without expiry time follow suggestion from documentation :

"To get a longer-lived page access token, exchange the User access token for a long-lived one, as above, and then request the Page access token. The resulting page access token will not have any expiry time."

$ python crawl.py

To Do List

  • Store word2vec model in database to save RAM
  • Replace stemming with lemmatizer
  • Add more crawling sources
  • Try reinforcement learning instead of supervised learning

References

  1. Stemmer https://github.com/har07/PySastrawi
  2. Stopwords list https://github.com/stopwords-iso/stopwords-id
  3. Text classification with Sklearn Pipeline https://bbengfort.github.io/tutorials/2016/05/19/text-classification-nltk-sckit-learn.html
  4. Text classification with Sklearn and Gensim Word2Vec http://nadbordrozd.github.io/blog/2016/05/20/text-classification-with-word2vec/
  5. Facebook FastText pretrained word vectors https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md

Releases

No releases published

Packages

No packages published

Languages