Skip to content

yossilevii100/refocusing

Repository files navigation

Robustifying Point Cloud Networks By Refocusing

Official pytorch implementation of the paper "Robustifying Point Cloud Networks by Refocusing".

We propose a fast and accurate approach to classify point-clouds. Our approach can be implanted to any existing classification network. We show superiority on robust classification and adversarial defense. We also leverage our method for XAI and outlier removal. Our method is based filtering the most prominent points. We achieve state-of-the-art results on ModelNet-C by combining our method with EPiC using RPC (mCE=0.476).


Tested on Ubuntu 20.04 LTS using python 3.8.10

Critical Points++ notebook:

A tutorial on Critical Points in general, and on our extensions - Discrete and Soft measures is here:

Open In Colab

Get Started

Step 0. Clone the Repo

git clone https://github.com/yossilevii100/refocusing.git
cd critical_points2

Step 1. Set Up the Environment

Set up the environment by:

pip install pointnet2_ops_lib/.

Step 2. Prepare Data

Download ModelNet-40 by:

cd data
wget https://shapenet.cs.stanford.edu/media/modelnet40_ply_hdf5_2048.zip
unzip modelnet40_ply_hdf5_2048.zip
cd ..

Alternatively, you may download ModelNet40 manually and extract it under data.

Download ModelNet-C by:

cd data
gdown https://drive.google.com/uc?id=1KE6MmXMtfu_mgxg4qLPdEwVD5As8B0rm
unzip modelnet_c.zip
cd ..

Alternatively, you may download ModelNet40-C manually and extract it under data.

Make sure your data folders are as follows:

data
--- modelnet_c
------ list of h5 files
--- modelnet40_ply_hdf5_2048
------ list of h5 files

Step 3.1 Download Pretrained Models - Robust Classiffication

Download pretrained models by

gdown https://drive.google.com/file/d/1xTeDtc9SUyrCodhEhP5K3TOTy3Ons_AO/view?usp=sharing
unzip robust_classification_checkpoint.zip -d pretrained
mv pretrained/robust_classification_checkpoint/*.* robust_classification/pretrained

Alternatively, you may download Robust Classiffication pretrained models manually and extract it under root directory.

Step 3.2 Download Pretrained Models - Adversarial Defense

Download pretrained models by

gdown https://drive.google.com/file/d/1KLtzO3tsbo29qL65f9celYE4HKaUMMsb/view?usp=drive_link
unzip shape_invariant_checkpoint.zip -d pretrained
mv pretrained/shape_invariant_checkpoint/*.* shape_invariant_attack/checkpoint/ModelNet40

Alternatively, you may download Shape_Invariant pretrained models manually and extract it under root directory.

RUN

Robust Classification

Robust Classification RUN (only critical points++):

python main.py --model dgcnn --eval

Robust Classification RUN (with EPiC):

python main.py --model dgcnn --eval --use_ensemble --use_ensemble_all

Adversarial Defense

Adversarial Defense RUN:

python main.py --dataset ModelNet40 --data_path /path/to/data/.../modelnet40_normal_resampled/ --query_attack_method ours  --surrogate_model dgcnn --target_model dgcnn_critical --step_size 0.32

Results on ModelNet-C

Our method achieves SOTA results on ModelNet-C, with and without augmentation. Moreover, our approach is improved each of the examined networks in terms of robustness.

Method Reference mCE Clean OA
DGCNN Wang et al. 0.590 0.932
DGCNN-EPiC Wang et al. 0.529 0.921
DGCNN-EPiC+CP++ Wang et al. 0.484 0.929
--------------- ---------------------------------------------------------- :---: :------:
GDANet Xu et al. 0.571 0.934
GDANet-EPiC Xu et al. 0.530 0.925
GDANet-EPiC+CP++ Xu et al. 0.493 0.928
--------------- ---------------------------------------------------------- :---: :------:
RPC Ren et al. 0.601 0.933
RPC-EPiC Ren et al. 0.501 0.927
RPC-EPiC+CP++ Ren et al. 0.476 0.929

Acknowledgement

This codebase heavily borrows codes from the following repositories:

About

Robustifying Point Cloud Networks by Refocusing

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published