The state-of-the-art performance on WSI using deep learning.Here we divide the wsi tasks into three parts:classification,segmentation and detection.
Dataset | WSI number | Dataset link | Code link | Paper | Year | Method | Accuracy(slide) | F1 | AUC(slide) | Precision | Recall |
---|---|---|---|---|---|---|---|---|---|---|---|
TCGA-NSCLC | 1053 | https://portal.gdc.cancer.gov/repository | https://github.com/cvlab-stonybrook/local learning wsi | Gigapixel Whole-Slide Images Classification using Locally Supervised Learning (arxiv.org) | 2022 | Locally Supervised Learning | 87.85 | 93.77 | |||
TCGA-RCC | 939 | https://portal.gdc.cancer.gov/repository | https://github.com/cvlab-stonybrook/local learning wsi | Gigapixel Whole-Slide Images Classification using Locally Supervised Learning (arxiv.org) | 2022 | Locally Supervised Learning | 91.40 | 97.60 | |||
LKS | 684 | https://github.com/cradleai/LKS-Dataset | https://github.com/cvlab-stonybrook/local learning wsi | Gigapixel Whole-Slide Images Classification using Locally Supervised Learning (arxiv.org) | 2022 | Locally Supervised Learning | 89.76 | ||||
TCGA-GBM、TCGA-LGG | 736 | https://portal.gdc.cancer.gov/repository | https://github.com/CityUAIM-Group/MultiModal-learning | Discrepancy and Gradient-Guided Multi-modal Knowledge Distillation for Pathological Glioma Grading | 2022 | Multi-modal Knowledge Distillation | 76.78 | 92.35 | |||
TCGA-LMS | 85 | https://github.com/machiraju-lab/UA-CNN | Uncertainty Aware Sampling Framework of Weak-Label Learning for Histology Image Classification | 0.83 ± 0.09 | 0.77 ± 0.10 | 0.75 ± 0.10 | 0.83 ± 0.0 | ||||
CAMELYON16 | 400 | https://camelyon17.grand-challenge.org/Data/ | https://github.com/miccaiif/DGMIL | DGMIL: Distribution Guided Multiple Instance Learning for Whole Slide Image Classification | 2022 | MIL | 0.8018 | 0.8368 | |||
CAMELYON16 | 400 | https://camelyon17.grand-challenge.org/Data/ | https://github.com/TencentAILabHealthcare/ReMix | ReMix:General and Efficient Framework for Multiple Instance Learning Based Whole Slide Image Classification | 2022 | MIL | 0.9543 | 0.9639 | 0.9410 | ||
CAMELYON16 | 401 | https://camelyon17.grand-challenge.org/Data/ | https://github.com/PhilipChicco/FRMIL | Feature Re-calibration Based Multiple Instance Learning for Whole Slide Image Classification | 2022 | MIL | 0.8910 | 0.8950 | |||
TCGA Lung | 1054 | https://portal.gdc.cancer.gov/repository | https://github.com/miccaiif/DGMIL | DGMIL: Distribution Guided Multiple Instance Learning for Whole Slide Image Classification | 2022 | MIL | 0.9200 | 0.9702 | |||
UniToPatho | 292 | https://ieee-dataport.org/open-access/unitopatho | https://github.com/TencentAILabHealthcare/ReMix | ReMix:General and Efficient Framework for Multiple Instance Learning Based Whole Slide Image Classification | 2022 | MIL | 0.8068 | 0.7820 | 0.8094 |
Dataset | WSI number | Dataset link | Code link | Paper | Year | Method | Accuracy | F1 | mIoU | Precision | Recall | Dice | AJI | Hausdorff | PQ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GlaS | 16 | https://warwick.ac.uk/fac/cross_fac/tia/data/glascontest/ | https://github.com/xmed-lab/OEEM | Online Easy Example Mining for Weakly-supervised Gland Segmentation from Histology Images (arxiv.org) | 2022 | CAM pseudo mask | 87.35 | 77.56 | 87.36 | ||||||
Kumar (nucleus) | 30 | https://monuseg.grand-challenge.org/Data/ | https://github.com/hust-linyi/insmix | InsMix: Towards Realistic Generative Data Augmentation for Nuclei Instance Segmentation | 2022 | Data Augmentation | 82.65 | 63.31 | |||||||
DeepLIIF | 1667 | https://deepliif.org/ | https://github.com/loic-lb/Unsupervised-Nuclei-Segmentation-using-Spatial-Organization-Priors | Unsupervised Nuclei Segmentation Using Spatial Organization Priors | 2022 | Unsupervised GAN | 79.65(Semantic) | 87.89(Semantic) | 66.30(Semantic) | "69.81(Semantic) | |||||
63.47(Object)" | 41.91(Object) | 14.79(Object) | |||||||||||||
Warwick HER2 | 84 | https://warwick.ac.uk/fac/cross_fac/tia/data/her2contest/ | https://github.com/loic-lb/Unsupervised-Nuclei-Segmentation-using-Spatial-Organization-Priors | Unsupervised Nuclei Segmentation Using Spatial Organization Priors | 2022 | Unsupervised GAN | 81.64(Semantic) | 75.71(Semantic) | 64.34(Semantic) | "58.46(Semantic) | |||||
58.65(Object)" | 39.07(Object) | 6.12(Object) | |||||||||||||
TNBC->KIRC/STAD | 50(TNBC)/486(KIRC)/99(STAD) | "https://zenodo.org/record/1175282#.Y2Ux2_dByiN | |||||||||||||
https://portal.gdc.cancer.gov/projects/TCGA-KIRC | |||||||||||||||
https://www.cancerimagingarchive.net/" | https://github.com/YashSharma/MaNi | MaNi: Maximizing Mutual Information for Nuclei Cross-Domain Unsupervised Segmentation | 2022 | Unsupervised Cross-Domain | "0.733(KIRC) | ||||||||||
0.776(TCIA)" | |||||||||||||||
STAD->KIRC/TNBC | 50(TNBC)/486(KIRC)/99(STAD) | "https://zenodo.org/record/1175282#.Y2Ux2_dByiN | |||||||||||||
https://portal.gdc.cancer.gov/projects/TCGA-KIRC | |||||||||||||||
https://www.cancerimagingarchive.net/" | https://github.com/YashSharma/MaNi | MaNi: Maximizing Mutual Information for Nuclei Cross-Domain Unsupervised Segmentation | 2022 | Unsupervised Cross-Domain | "0.727(KIRC) | ||||||||||
0.821(TCIA)" | |||||||||||||||
CoNSep->PanNuke | 41(CoNSep)/481(PanNuke) | "https://warwick.ac.uk/fac/cross_fac/tia/data/hovernet/ | |||||||||||||
https://jgamper.github.io/PanNukeDataset/" | https://github.com/YashSharma/MaNi | MaNi: Maximizing Mutual Information for Nuclei Cross-Domain Unsupervised Segmentation | 2022 | Unsupervised Cross-Domain | 0.74 | 0.534 | 0.477 | ||||||||
CAMELYON16 | 400 | https://github.com/miccaiif/DGMIL | DGMIL: Distribution Guided Multiple Instance Learning for Whole Slide Image Classification | 2022 | MIL | ||||||||||
TCGA Lung | 1054 | https://portal.gdc.cancer.gov/repository | https://github.com/miccaiif/DGMIL | DGMIL: Distribution Guided Multiple Instance Learning for Whole Slide Image Classification | 2022 | MIL |
Dataset | WSI number | Dataset link | Code link | Paper | Year | Method | AUC |
---|---|---|---|---|---|---|---|
TCGA-CRC、TCGA-STAD | 896+2675 | https://portal.gdc.cancer.gov/projects/TCGA-STAD | / | Joint Region-Attention and Multi-scale Transformer for Microsatellite Instability Detection from Whole Slide Images in Gastrointestinal Cancer | 2022 | Multi-scale transformer | 0.921 |