Skip to content

Implementation of "Learning Latent Representations for Style Control and Transfer in End-to-end Speech Synthesis"

License

Notifications You must be signed in to change notification settings

zge/tacotron2-vae

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

tacotron2-vae

Overview

overview

Data

  1. Dataset

    • Korean Speech Emotion Dataset (more info)
    • Single Female Voice Actor recorded six diffrent emotions(neutral, happy, sad, angry, disgust, fearful), each with 3,000 sentences.
    • For training, I used four emotions(neutral,happy,sad,angry), total 21.25 hours
  2. Text

    • test: python -m text.cleaners
    • examples
    감정있는 한국어 목소리 생성
     ==>
    ['ᄀ', 'ㅏ', 'ㅁ', 'ᄌ', 'ㅓ', 'ㅇ', 'ᄋ', 'ㅣ', 'ㅆ', 'ᄂ', 'ㅡ', 'ㄴ', ' ', 'ᄒ', 'ㅏ', 'ㄴ', 'ᄀ', 'ㅜ', 'ㄱ', 'ᄋ', 'ㅓ', ' ', 'ᄆ', 'ㅗ', 'ㄱ', 'ᄉ', 'ㅗ', 'ᄅ', 'ㅣ', ' ', 'ᄉ', 'ㅐ', 'ㅇ', 'ᄉ', 'ㅓ', 'ㅇ', '~']
     ==>
    [2, 21, 57, 14, 25, 62, 13, 41, 61, 4, 39, 45, 79, 20, 21, 45, 2, 34, 42, 13, 25, 79, 8, 29, 42, 11, 29, 7, 41, 79, 11, 22, 62, 11, 25, 62, 1] 
    
  3. Audio

    • sampling rate: 16000
    • filter length: 1024
    • hop length: 256
    • win length: 1024
    • n_mel: 80
    • mel_fmin: 0
    • mel_fmax: 8000
  4. Training files

    • ./filelists/*.txt
    • path | text | speaker | emotion
    • examples
    /KoreanEmotionSpeech/wav/neu/neu_00002289.wav|선생님이 초록색으로 머리를 염색하고 나타나서 모두들 깜짝 놀랐다.|0|0
    /KoreanEmotionSpeech/wav/sad/sad_00002266.wav|과외 선생님이 열심히 지도해준 덕택에 수학실력이 점점 늘고 있다.|0|1
    /KoreanEmotionSpeech/wav/ang/ang_00000019.wav|명백한 것은 각 당이 투사하고 있는 실상과 허상이 있다면 이제 허상은 걷어들여야 한다는 것이다.|0|2
    /KoreanEmotionSpeech/wav/hap/hap_00001920.wav|강력한 스크럽으로 상쾌한 양치효과를 주네요.|0|3
    

Training

  1. Prepare Datasets
  2. Clone this repo: git clone https://github.com/jinhan/tacotron2-vae.git
  3. CD into this repo: cd tacotron2-vae
  4. Initialize submodule: git submodule init; git submodule update
  5. Update .wav paths: sed -i -- 's,DUMMY,ljs_dataset_folder/wavs,g' filelists/*.txt
  6. Install requirements pip install -r requirements.txt
  7. Training: python train.py --output_directory=outdir --log_directory=logdir -- hparams=training_files='filelists/koemo_spk_emo_all_train.txt',validation_files='filelists/koemo_spk_emo_all_valid.txt',anneal_function='constant',batch_size=6
  8. Monitoring: tensorboard --logdir=outdir/logdir --host=127.0.0.1
  9. Training results (~ 250,000 steps)

alignment

Visualization

source: inference.ipynb

  1. Load Models

    tacotron2-vae model

    model = load_model(hparams)
    model.load_state_dict(torch.load(checkpoint_path)['state_dict'])
    _ = model.eval()

    WaveGlow vocoder model

    waveglow = torch.load(waveglow_path)['model']
    waveglow.cuda()
  2. Load Data

    • 'Prosody' is the output of the fully connected layer to match dimension of z and text-encoded output.
    path = './filelists/koemo_spk_emo_all_test.txt'
    with open(path, encoding='utf-8') as f:
        filepaths_and_text = [line.strip().split("|") for line in f]
    
    model.eval()
    prosody_outputs = []
    emotions = []
    mus = []
    zs = []
    
    for audio_path, _, _, emotion in tqdm(filepaths_and_text):
        melspec = load_mel(audio_path)
        prosody, mu, _, z = model.vae_gst(melspec)
        prosody_outputs.append(prosody.squeeze(1).cpu().data) 
        mus.append(mu.cpu().data)
        zs.append(z.cpu().data)
        emotions.append(int(emotion))
    
    prosody_outputs = torch.cat(prosody_outputs, dim=0)
    emotions = np.array(emotions)
    mus = torch.cat(mus, dim=0)
    zs = torch.cat(zs, dim=0)
  3. Scatter plot

    colors = 'r','b','g','y'
    labels = 'neu','sad','ang','hap'
    
    data_x = mus.data.numpy()
    data_y = emotions
    
    plt.figure(figsize=(10,10))
    for i, (c, label) in enumerate(zip(colors, labels)):
        plt.scatter(data_x[data_y==i,0], data_x[data_y==i,1], c=c, label=label, alpha=0.5)
    
    axes = plt.gca()
    plt.grid(True)
    plt.legend(loc='upper left')

    scatter plot

  4. t-SNE plot

    colors = 'r','b','g','y'
    labels = 'neu','sad','ang','hap'
    
    data_x = mus
    data_y = emotions
    
    tsne_model = TSNE(n_components=2, random_state=0, init='random')
    tsne_all_data = tsne_model.fit_transform(data_x)
    tsne_all_y_data = data_y
    
    plt.figure(figsize=(10,10))
    for i, (c, label) in enumerate(zip(colors, labels)):
        plt.scatter(tsne_all_data[tsne_all_y_data==i,0], tsne_all_data[tsne_all_y_data==i,1], c=c, label=label, alpha=0.5)
    
    plt.grid(True)
    plt.legend(loc='upper left')

    t-SNE plot

Inference

source: inference.ipynb

Reference Audio

  • Generate voice that follows the style of the reference audio

    Reference audio

    def generate_audio_vae_by_ref(text, ref_audio):
        transcript_outputs = TextEncoder(text)
    
        print("reference audio")
        ipd.display(ipd.Audio(ref_audio, rate=hparams.sampling_rate))
    
        ref_audio_mel = load_mel(ref_audio)
        latent_vector, _, _, _ = model.vae_gst(ref_audio_mel)
        latent_vector = latent_vector.unsqueeze(1).expand_as(transcript_outputs)
    
        encoder_outputs = transcript_outputs + latent_vector
    
        synth, mel_outputs = Decoder(encoder_outputs)
    
        ipd.display(ipd.Audio(synth[0].data.cpu().numpy(), rate=hparams.sampling_rate))
        ipd.display(plot_data(mel_outputs.data.cpu().numpy()[0]))

    Generate voice

    text = "이 모델을 이용하면 같은 문장을 여러가지 스타일로 말할 수 있습니다."
    ref_wav = "/KoreanEmotionSpeech/wav/ang/ang_00000100.wav"
    generate_audio_vae_by_ref(text, ref_wav)

Interpolation

  • Create a new z by multiply ratios to the centroids.

    Interpolation

    def generate_audio_vae(text, ref_audio, trg_audio, ratios):
        transcript_outputs = TextEncoder(text)
    
        for ratio in ratios:
            latent_vector = ref_audio * ratio + trg_audio * (1.0-ratio)
            latent_vector = torch.FloatTensor(latent_vector).cuda()
            latent_vector = model.vae_gst.fc3(latent_vector)
    
            encoder_outputs = transcript_outputs + latent_vector
    
            synth, mel_outputs_postnet = Decoder(encoder_outputs)
            ipd.display(ipd.Audio(synth[0].data.cpu().numpy(), rate=hparams.sampling_rate))
            ipd.display(plot_data(mel_outputs_postnet.data.cpu().numpy()[0]))

    Get Centroids

    encoded = zs.data.numpy()
    neu = np.mean(encoded[emotions==0,:], axis=0)
    sad = np.mean(encoded[emotions==1,:], axis=0)
    ang = np.mean(encoded[emotions==2,:], axis=0)
    hap = np.mean(encoded[emotions==3,:], axis=0)

    Generate voice

    text = "이 모델을 이용하면 같은 문장을 여러가지 스타일로 말할 수 있습니다."
    ref_audio = hap
    trg_audio = sad
    ratios = [1.0, 0.64, 0.34, 0.0]
    generate_audio_vae(text, ref_audio, trg_audio, ratios)

Mixer

  • Result of mixing more than two labels at a desired ratio

    Mixer

    def generate_audio_vae_mix(text, ratios):
       transcript_outputs = TextEncoder(text)
    
       latent_vector = ratios[0]*neu + ratios[1]*hap + ratios[2]*sad + ratios[3]*ang
       latent_vector = torch.FloatTensor(latent_vector).cuda()
       latent_vector = model.vae_gst.fc3(latent_vector)
    
       encoder_outputs = transcript_outputs + latent_vector
    
       synth, mel_outputs = Decoder(encoder_outputs)
    
       ipd.display(ipd.Audio(synth[0].data.cpu().numpy(), rate=hparams.sampling_rate))
       ipd.display(plot_data(mel_outputs.data.cpu().numpy()[0]))

    Generate voice

    text = "이 모델을 이용하면 같은 문장을 여러가지 스타일로 말할 수 있습니다."
    ratios = [0.0, 0.25, 0.0, 0.75] #neu, hap, sad, ang
    generate_audio_vae_mix(text, ratios)

Demo page

  1. Run: python app.py --checkpoint_path="./models/032902_vae_250000" --waveglow_path="./models/waveglow_130000"
  2. Mix: Generate voices by adjusting the ratio of netural, sad, happy, and angry
  3. Ref Audio: Generate voices by testset audio as a reference audio

demo page

Samples

  • Interpolation: Result of interpolating between two labels at 1.0, 0.66, 0.33, and 0.0
  • refs: Result of recorded audio as a reference audio
  • mix: Result of mixing more than two labels at a desired ratio

References

About

Implementation of "Learning Latent Representations for Style Control and Transfer in End-to-end Speech Synthesis"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 94.5%
  • Python 5.3%
  • Other 0.2%