Skip to content

Commit

Permalink
first commit
Browse files Browse the repository at this point in the history
  • Loading branch information
zggg1p committed Feb 10, 2022
1 parent 6ebcc49 commit 1a65ee0
Show file tree
Hide file tree
Showing 8 changed files with 949 additions and 0 deletions.
135 changes: 135 additions & 0 deletions LetNet5Fashion-MNIST.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,135 @@
#引入相关库
import torch
import torch.optim as optim
from torch.autograd import Variable
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import datasets, transforms

# 定义超参数
EPOCH = 20 #遍历数据集次数
pre_epoch = 0 # 定义已经遍历数据集的次数
BATCH_SIZE = 64 #批处理尺寸(batch_size)
LR = 0.01 #学习率

class LeNet(nn.Module):#定义网络
def __init__(self):
super(LeNet, self).__init__()
self.conv1 = nn.Sequential(nn.Conv2d(1, 6, 5, 1, 2), nn.ReLU(),
nn.MaxPool2d(2, 2))

self.conv2 = nn.Sequential(nn.Conv2d(6, 16, 5), nn.ReLU(),
nn.MaxPool2d(2, 2))

self.fc1 = nn.Sequential(nn.Linear(16 * 5 * 5, 120),
nn.BatchNorm1d(120), nn.ReLU())

self.fc2 = nn.Sequential(
nn.Linear(120, 84),
nn.BatchNorm1d(84),
nn.ReLU(),
nn.Linear(84, 10))
# 最后的结果一定要变为 10,因为数字的选项是 0 ~ 9

def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = x.view(x.size()[0], -1)#展平
x = self.fc1(x)
x = self.fc2(x)
return x

# 启用GPU
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# 启用GPU
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

#加载数据集
train_loader = torch.utils.data.DataLoader( # 加载训练数据
datasets.FashionMNIST('./data2', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,)) # 数据集给出的均值和标准差系数,每个数据集都不同的,都数据集提供方给出的
])),
batch_size=BATCH_SIZE, shuffle=True)
test_loader = torch.utils.data.DataLoader( # 加载训练数据
datasets.FashionMNIST('./data2', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,)) # 数据集给出的均值和标准差系数,每个数据集都不同的,都数据集提供方给出的
])),
batch_size=BATCH_SIZE, shuffle=True)

model = LeNet() # 实例化一个网络对象
model = model.to(device)

criterion = nn.CrossEntropyLoss() #损失函数为交叉熵,多用于多分类问题
optimizer = optim.Adam(model.parameters(), lr=LR) #优化方式为mini-batch momentum-SGD,并采用L2正则化(权重衰

# 训练
if __name__ == "__main__":
best_acc = 85 #2 初始化best test accuracy
print("Start Training, LetNet5(Fashin-Minist)!") # 定义遍历数据集的次数
with open("MINIST-FASHIONacc.txt", "w") as f:
with open("MINIST-FASHIONlog.txt", "w")as f2:
for epoch in range(pre_epoch, EPOCH):
print('\nEpoch: %d' % (epoch + 1))
model.train()
sum_loss = 0.0
correct = 0.0
total = 0.0
for i, data in enumerate(train_loader, 0):
# 准备数据
length = len(train_loader)
inputs, labels = data
inputs, labels = Variable(inputs), Variable(labels)
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
# forward + backward
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 每训练1个batch打印一次loss和准确率
sum_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += predicted.eq(labels.data).cpu().sum()
print('[epoch:%d, iter:%d] Loss: %.03f | Acc: %.3f%% '
% (epoch + 1, (i + 1 + epoch * length), sum_loss / (i + 1), 100. * correct / total))
f2.write('%03d %05d |Loss: %.03f | Acc: %.3f%% '
% (epoch + 1, (i + 1 + epoch * length), sum_loss / (i + 1), 100. * correct / total))
f2.write('\n')
f2.flush()

# 每训练完一个epoch测试一下准确率
print("Waiting Test!")
model.eval()
with torch.no_grad():
correct = 0
total = 0
for data in test_loader:
model.eval()
images, labels = data
images, labels = Variable(images), Variable(labels)
images, labels = images.to(device), labels.to(device)
outputs = model(images)
# 取得分最高的那个类 (outputs.data的索引号)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum()
print('测试分类准确率为:%.3f%%' % (100 * correct / total))
acc = 100. * correct / total
# 将每次测试结果实时写入acc.txt文件中
f.write("EPOCH=%03d,Accuracy= %.3f%%" % (epoch + 1, acc))
f.write('\n')
f.flush()
# 记录最佳测试分类准确率并写入best_acc.txt文件中
if acc > best_acc:
f3 = open("MINIST-FASHIONbest_acc.txt", "w")
f3.write("EPOCH=%d,best_acc= %.3f%%" % (epoch + 1, acc))
f3.close()
best_acc = acc
print('Saving model......')
torch.save(model, 'MINIST-FASHION_%03d.pth' % (epoch + 1))
print("Training Finished, TotalEPOCH=%d" % EPOCH)
135 changes: 135 additions & 0 deletions LetNet5MINIST.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,135 @@
#引入相关库
import torch
import torch.optim as optim
from torch.autograd import Variable
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import datasets, transforms

# 定义超参数
EPOCH = 20 #遍历数据集次数
pre_epoch = 0 # 定义已经遍历数据集的次数
BATCH_SIZE = 64 #批处理尺寸(batch_size)
LR = 0.001 #学习率

class LeNet(nn.Module):#定义网络
def __init__(self):
super(LeNet, self).__init__()
self.conv1 = nn.Sequential(nn.Conv2d(1, 6, 5, 1, 2), nn.ReLU(),
nn.MaxPool2d(2, 2))

self.conv2 = nn.Sequential(nn.Conv2d(6, 16, 5), nn.ReLU(),
nn.MaxPool2d(2, 2))

self.fc1 = nn.Sequential(nn.Linear(16 * 5 * 5, 120),
nn.BatchNorm1d(120), nn.ReLU())

self.fc2 = nn.Sequential(
nn.Linear(120, 84),
nn.BatchNorm1d(84),
nn.ReLU(),
nn.Linear(84, 10))
# 最后的结果一定要变为 10,因为数字的选项是 0 ~ 9

def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = x.view(x.size()[0], -1)#展平
x = self.fc1(x)
x = self.fc2(x)
return x

# 启用GPU
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# 启用GPU
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

#加载数据集
train_loader = torch.utils.data.DataLoader( # 加载训练数据
datasets.MNIST('./data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,)) # 数据集给出的均值和标准差系数,每个数据集都不同的,都数据集提供方给出的
])),
batch_size=BATCH_SIZE, shuffle=True)
test_loader = torch.utils.data.DataLoader( # 加载训练数据
datasets.MNIST('./data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,)) # 数据集给出的均值和标准差系数,每个数据集都不同的,都数据集提供方给出的
])),
batch_size=BATCH_SIZE, shuffle=True)

model = LeNet() # 实例化一个网络对象
model = model.to(device)

criterion = nn.CrossEntropyLoss() #损失函数为交叉熵,多用于多分类问题
optimizer = optim.Adam(model.parameters(), lr=LR) #优化方式为mini-batch momentum-SGD,并采用L2正则化(权重衰

# 训练
if __name__ == "__main__":
best_acc = 85 #2 初始化best test accuracy
print("Start Training, LetNet5-Minist!") # 定义遍历数据集的次数
with open("LetNet5-Ministacc.txt", "w") as f:
with open("LetNet5-Ministlog.txt", "w")as f2:
for epoch in range(pre_epoch, EPOCH):
print('\nEpoch: %d' % (epoch + 1))
model.train()
sum_loss = 0.0
correct = 0.0
total = 0.0
for i, data in enumerate(train_loader, 0):
# 准备数据
length = len(train_loader)
inputs, labels = data
inputs, labels = Variable(inputs), Variable(labels)
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
# forward + backward
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 每训练1个batch打印一次loss和准确率
sum_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += predicted.eq(labels.data).cpu().sum()
print('[epoch:%d, iter:%d] Loss: %.03f | Acc: %.3f%% '
% (epoch + 1, (i + 1 + epoch * length), sum_loss / (i + 1), 100. * correct / total))
f2.write('%03d %05d |Loss: %.03f | Acc: %.3f%% '
% (epoch + 1, (i + 1 + epoch * length), sum_loss / (i + 1), 100. * correct / total))
f2.write('\n')
f2.flush()

# 每训练完一个epoch测试一下准确率
print("Waiting Test!")
model.eval()
with torch.no_grad():
correct = 0
total = 0
for data in test_loader:
model.eval()
images, labels = data
images, labels = Variable(images), Variable(labels)
images, labels = images.to(device), labels.to(device)
outputs = model(images)
# 取得分最高的那个类 (outputs.data的索引号)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum()
print('测试分类准确率为:%.3f%%' % (100 * correct / total))
acc = 100. * correct / total
# 将每次测试结果实时写入acc.txt文件中
f.write("EPOCH=%03d,Accuracy= %.3f%%" % (epoch + 1, acc))
f.write('\n')
f.flush()
# 记录最佳测试分类准确率并写入best_acc.txt文件中
if acc > best_acc:
f3 = open("LetNet5-Ministbest_acc.txt", "w")
f3.write("EPOCH=%d,best_acc= %.3f%%" % (epoch + 1, acc))
f3.close()
best_acc = acc
print('Saving model......')
torch.save(model, 'LetNet5-Minist_%03d.pth' % (epoch + 1))
print("Training Finished, TotalEPOCH=%d" % EPOCH)
Loading

0 comments on commit 1a65ee0

Please sign in to comment.