Co-DETR
Collection
State-of-the-art detection and segmentation models.
•
5 items
•
Updated
•
2
In this paper, we present a novel collaborative hybrid assignments training scheme, namely Co-DETR, to learn more efficient and effective DETR-based detectors from versatile label assignment manners.
Model | Backbone | Aug | Dataset | box AP (val) | mask AP (val) |
---|---|---|---|---|---|
Co-DETR | ViT-L | LSJ | LVIS | 67.3 | 60.7 |
We implement Co-DETR using MMDetection V2.25.3 and MMCV V1.5.0. Please refer to our github repo for more details.
Train Co-Deformable-DETR + ResNet-50 with 8 GPUs:
sh tools/dist_train.sh projects/configs/co_deformable_detr/co_deformable_detr_r50_1x_coco.py 8 path_to_exp
Train using slurm:
sh tools/slurm_train.sh partition job_name projects/configs/co_deformable_detr/co_deformable_detr_r50_1x_coco.py path_to_exp
Test Co-Deformable-DETR + ResNet-50 with 8 GPUs, and evaluate:
sh tools/dist_test.sh projects/configs/co_deformable_detr/co_deformable_detr_r50_1x_coco.py path_to_checkpoint 8 --eval bbox
Test using slurm:
sh tools/slurm_test.sh partition job_name projects/configs/co_deformable_detr/co_deformable_detr_r50_1x_coco.py path_to_checkpoint --eval bbox
If you find this repository useful, please use the following BibTeX entry for citation.
@inproceedings{zong2023detrs,
title={Detrs with collaborative hybrid assignments training},
author={Zong, Zhuofan and Song, Guanglu and Liu, Yu},
booktitle={Proceedings of the IEEE/CVF international conference on computer vision},
pages={6748--6758},
year={2023}
}