Skip to content

Matt-Olek/pytorch-auto-augment

 
 

Repository files navigation

PyTorch implementation of AutoAugment

This repository contains code for AutoAugment (only using paper's best policies) based on AutoAugment: Learning Augmentation Policies from Data implemented in PyTorch.

example

Requirements

  • Python 3.6
  • PyTorch 1.0

Training

CIFAR-10

WideResNet28-10 baseline on CIFAR-10:

python train.py

WideResNet28-10 +Cutout, AutoAugment on CIFAR-10:

python train.py --cutout True --auto-augment True

Results

CIFAR-10

Model Error rate Loss Error rate (paper)
WideResNet28-10 baseline 3.82 0.1576 3.87
WideResNet28-10 +Cutout 3.40 0.1280 3.08
WideResNet28-10 +Cutout, AutoAugment 2.91 0.0994 2.68

Learning curves of loss and accuracy.

loss

acc

About

PyTorch implementation of AutoAugment.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 92.9%
  • Python 7.1%