The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: DatasetGenerationError Exception: ParserError Message: Error tokenizing data. C error: EOF inside string starting at row 14963 Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1995, in _prepare_split_single for _, table in generator: File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/csv/csv.py", line 195, in _generate_tables for batch_idx, df in enumerate(csv_file_reader): File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 1843, in __next__ return self.get_chunk() File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 1985, in get_chunk return self.read(nrows=size) File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 1923, in read ) = self._engine.read( # type: ignore[attr-defined] File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/c_parser_wrapper.py", line 234, in read chunks = self._reader.read_low_memory(nrows) File "parsers.pyx", line 850, in pandas._libs.parsers.TextReader.read_low_memory File "parsers.pyx", line 905, in pandas._libs.parsers.TextReader._read_rows File "parsers.pyx", line 874, in pandas._libs.parsers.TextReader._tokenize_rows File "parsers.pyx", line 891, in pandas._libs.parsers.TextReader._check_tokenize_status File "parsers.pyx", line 2061, in pandas._libs.parsers.raise_parser_error pandas.errors.ParserError: Error tokenizing data. C error: EOF inside string starting at row 14963 The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1529, in compute_config_parquet_and_info_response parquet_operations = convert_to_parquet(builder) File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1154, in convert_to_parquet builder.download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1027, in download_and_prepare self._download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1122, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1882, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2038, in _prepare_split_single raise DatasetGenerationError("An error occurred while generating the dataset") from e datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
TOKEN
string | NE-COARSE-LIT
string | MISC
string |
---|---|---|
-DOCSTART- | O | _ |
# onb:id = ONB_hum_18400625 | null | null |
# onb:image_link = https://anno.onb.ac.at/cgi-content/anno?aid=hum&datum=18400625&seite=2 | null | null |
# onb:page_nr = 2 | null | null |
# onb:publication_year_str = 18400625 | null | null |
506 | O | _ |
fülle | O | _ |
aus | O | _ |
seinem | O | _ |
Herzen | O | _ |
strömt | O | _ |
; | O | _ |
er | O | _ |
setzt | O | _ |
jedoch | O | _ |
sehr | O | _ |
oft | O | _ |
aus | O | _ |
, | O | _ |
weil | O | _ |
die | O | _ |
immer | O | _ |
wiederkehrende | O | _ |
Thräne | O | _ |
sein | O | _ |
Auge | O | _ |
umflort | O | _ |
; | O | _ |
die | O | _ |
Lippen | O | _ |
sind | O | _ |
fast | O | _ |
zusammengepreßt | O | _ |
, | O | _ |
als | O | _ |
wollten | O | _ |
sie | O | _ |
den | O | _ |
ausbre | O | _ |
chenden | O | _ |
Schmerz | O | _ |
mit | O | _ |
Gewalt | O | _ |
nach | O | _ |
Innen | O | _ |
zurückdrängen | O | _ |
, | O | _ |
un | O | _ |
nur | O | _ |
dann | O | _ |
öffnen | O | _ |
sie | O | _ |
sich | O | _ |
, | O | _ |
wenn | O | _ |
die | O | _ |
Brust | O | _ |
durch | O | _ |
Anhäufung | O | _ |
unterdrückter | O | _ |
Seufzer | O | _ |
zu | O | _ |
zerspringen | O | _ |
droht | O | _ |
; | O | _ |
diese | O | _ |
steigen | O | _ |
danr | O | _ |
herauf | O | _ |
aus | O | _ |
einer | O | _ |
endlosen | O | _ |
Tiefe | O | _ |
, | O | _ |
wie | O | _ |
bei | O | _ |
einem | O | _ |
ausgebrannten | O | _ |
Vulkane | O | _ |
der | O | _ |
feurige | O | _ |
Luftstrom | O | _ |
dem | O | _ |
innersten | O | _ |
Bergseingeweide | O | _ |
entfährt | O | _ |
. | O | EndOfSentence |
Jetzt | O | _ |
scheint | O | _ |
er | O | _ |
eine | O | _ |
großartige | O | _ |
Idee | O | _ |
niedergeschrieben | O | _ |
zu | O | _ |
haben | O | _ |
, | O | _ |
würdig | O | _ |
dem | O | _ |
Gehirne | O | _ |
HisGermaNER: NER Datasets for Historical German
In this repository we release another NER dataset from historical German newspapers.
Newspaper corpus
In the first release of our dataset, we select 11 newspapers from 1710 to 1840 from the Austrian National Library (ONB), resulting in 100 pages:
Year | ONB ID | Newspaper | URL | Pages |
---|---|---|---|---|
1720 | ONB_wrz_17200511 |
Wiener Zeitung | Viewer | 10 |
1730 | ONB_wrz_17300603 |
Wiener Zeitung | Viewer | 14 |
1740 | ONB_wrz_17401109 |
Wiener Zeitung | Viewer | 12 |
1770 | ONB_rpr_17700517 |
Reichspostreuter | Viewer | 4 |
1780 | ONB_wrz_17800701 |
Wiener Zeitung | Viewer | 24 |
1790 | ONB_pre_17901030 |
Preßburger Zeitung | Viewer | 12 |
1800 | ONB_ibs_18000322 |
Intelligenzblatt von Salzburg | Viewer | 8 |
1810 | ONB_mgs_18100508 |
Morgenblatt für gebildete Stände | Viewer | 4 |
1820 | ONB_wan_18200824 |
Der Wanderer | Viewer | 4 |
1830 | ONB_ild_18300713 |
Das Inland | Viewer | 4 |
1840 | ONB_hum_18400625 |
Der Humorist | Viewer | 4 |
Data Workflow
In the first step, we obtain original scans from ONB for our selected newspapers. In the second step, we perform OCR using Transkribus.
We use the Transkribus print M1 model for performing OCR. Note: we experimented with an existing NewsEye model, but the print M1 model is newer and led to better performance in our preliminary experiments.
Only layout hints/fixes were made in Transkribus. So no OCR corrections or normalizations were performed.
We export plain text of all newspaper pages into plain text format and perform normalization of hyphenation and the =
character.
After normalization we tokenize the plain text newspaper pages using the PreTokenizer
of the hmBERT model.
After pre-tokenization we import the corpus into Argilla to start the annotation of named entities.
Note: We perform annotation at page/document-level. Thus, no sentence segmentation is needed and performed.
In the annotation process we also manually annotate sentence boundaries using a special EOS
tag.
The dataset is exported into an CoNLL-like format after the annotation process.
The EOS
tag is removed and the information of an potential end of sentence is stored in a special column.
Annotation Guidelines
We use the same NE's (PER
, LOC
and ORG
) and annotation guideline as used in the awesome Europeana NER Corpora.
Furthermore, we introduced some specific rules for annotations:
PER
: We include e.g.Kaiser
,Lord
,Cardinal
orGraf
in the NE, but notHerr
,Fräulein
,General
or rank/grades.LOC
: We excludedKönigreich
from the NE.
Dataset Format
Our dataset format is inspired by the HIPE-2022 Shared Task. Here's an example of an annotated document:
TOKEN NE-COARSE-LIT MISC
-DOCSTART- O _
# onb:id = ONB_wrz_17800701
# onb:image_link = https://anno.onb.ac.at/cgi-content/anno?aid=wrz&datum=17800701&seite=12
# onb:page_nr = 12
# onb:publication_year_str = 17800701
den O _
Pöbel O _
noch O _
mehr O _
in O _
Harnisch O _
. O EndOfSentence
Sie O _
legten O _
sogleich O _
Note: we include a -DOCSTART-
marker to e.g. allow document-level features for NER as proposed in the FLERT paper.
Dataset Splits & Stats
For training powerful NER models on the dataset, we manually document-splitted the dataset into training, development and test splits.
The training split consists of 73 documents, development split of 13 documents and test split of 14 documents.
We perform dehyphenation as one and only preprocessing step. The final dataset splits can be found in the splits
folder of this dataset repository.
Some dataset statistics - instances per class:
Class | Training | Development | Test |
---|---|---|---|
PER |
942 | 308 | 238 |
LOC |
749 | 217 | 216 |
ORG |
16 | 3 | 11 |
Number of sentences (incl. document marker) per split:
Training | Development | Test | |
---|---|---|---|
Sentences | 1.539 | 406 | 400 |
Release Cycles
We plan to release new updated versions of this dataset on a regular basis (e.g. monthly).
For now, we want to collect some feedback about the dataset first, so we use v0
as current version.
Questions & Feedback
Please open a new discussion here for questions or feedback!
License
Dataset is (currently) licenced under CC BY 4.0.
- Downloads last month
- 183