Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Use logistic function from eigen (based on jachymb's PR) #3160

Merged
merged 10 commits into from
Mar 14, 2025

Conversation

SteveBronder
Copy link
Collaborator

Summary

Modifies inv_logit to use the logistic function from Eigen. Also makes a new reverse mode specialization of inv_logit for Eigen matrices.

Tests

No new tests.

Checklist

  • Copyright holder: Jáchym Barvínek and Steve Bronder

    The copyright holder is typically you or your assignee, such as a university or company. By submitting this pull request, the copyright holder is agreeing to the license the submitted work under the following licenses:
    - Code: BSD 3-clause (https://opensource.org/licenses/BSD-3-Clause)
    - Documentation: CC-BY 4.0 (https://creativecommons.org/licenses/by/4.0/)

  • the basic tests are passing

    • unit tests pass (to run, use: ./runTests.py test/unit)
    • header checks pass, (make test-headers)
    • dependencies checks pass, (make test-math-dependencies)
    • docs build, (make doxygen)
    • code passes the built in C++ standards checks (make cpplint)
  • the code is written in idiomatic C++ and changes are documented in the doxygen

  • the new changes are tested

@andrjohns
Copy link
Collaborator

Can this use apply_vector_unary? That way the Eigen implementation will also be used for std::vector (and nested containers)

@SteveBronder
Copy link
Collaborator Author

SteveBronder commented Mar 6, 2025

@andrjohns do you mean something besides the definition in prim that uses apply_scalar_unary?

template <typename T, require_std_vector_t<T>* = nullptr>
inline auto inv_logit(T&& x) {
  return apply_scalar_unary<inv_logit_fun, std::decay_t<T>>::apply(
      std::forward<T>(x));
}

@andrjohns
Copy link
Collaborator

@andrjohns do you mean something besides the definition in prim that uses apply_scalar_unary?

template <typename T, require_std_vector_t<T>* = nullptr>
inline auto inv_logit(T&& x) {
  return apply_scalar_unary<inv_logit_fun, std::decay_t<T>>::apply(
      std::forward<T>(x));
}

Yeah the issue with the current definition is that it won't use the vectorised Eigen implementation for std::vector types (either std::vector<double> or std::vector<Eigen::...>). You can instead use the pattern from prim/fun/exp where apply_scalar_unary is used for non-arithmetic containers and apply_vector_unary is used for arithmetic containers:

template <typename Container, require_ad_container_t<Container>* = nullptr>
inline auto inv_logit(const Container& x) {
  return apply_scalar_unary<inv_logit_fun, Container>::apply(x);
}

template <typename Container,
          require_container_bt<std::is_arithmetic, Container>* = nullptr>
inline auto inv_logit(const Container& x) {
  return apply_vector_unary<Container>::apply(
      x, [](const auto& v) { return v.array().logistic(); });
}

This way the Eigen logistic function will be used for all arithmetic containers (even arbitrarily nested ones)

@andrjohns
Copy link
Collaborator

apply_vector_unary also handles returning an Eigen::Matrix vs Eigen::Array to match the input type, which would resolve the current unit test failures

@stan-buildbot
Copy link
Contributor


Name Old Result New Result Ratio Performance change( 1 - new / old )
arma/arma.stan 0.39 0.42 0.92 -8.5% slower
low_dim_corr_gauss/low_dim_corr_gauss.stan 0.01 0.01 0.98 -1.8% slower
gp_regr/gen_gp_data.stan 0.03 0.03 0.98 -2.32% slower
gp_regr/gp_regr.stan 0.1 0.1 0.98 -1.86% slower
sir/sir.stan 76.6 74.73 1.03 2.44% faster
irt_2pl/irt_2pl.stan 4.97 4.93 1.01 0.82% faster
eight_schools/eight_schools.stan 0.06 0.06 1.05 4.46% faster
pkpd/sim_one_comp_mm_elim_abs.stan 0.28 0.28 0.99 -0.56% slower
pkpd/one_comp_mm_elim_abs.stan 21.06 20.4 1.03 3.12% faster
garch/garch.stan 0.51 0.48 1.06 5.55% faster
low_dim_gauss_mix/low_dim_gauss_mix.stan 2.93 3.17 0.92 -8.47% slower
arK/arK.stan 1.93 1.86 1.04 3.91% faster
gp_pois_regr/gp_pois_regr.stan 3.09 2.97 1.04 3.92% faster
low_dim_gauss_mix_collapse/low_dim_gauss_mix_collapse.stan 9.57 9.11 1.05 4.84% faster
performance.compilation 205.18 203.36 1.01 0.89% faster
Mean result: 1.006107982606331

Jenkins Console Log
Blue Ocean
Commit hash: fa89f3f2eeace783e24dc5d33e94f737d6e7f2f7


Machine information No LSB modules are available. Distributor ID: Ubuntu Description: Ubuntu 20.04.3 LTS Release: 20.04 Codename: focal

CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 46 bits physical, 48 bits virtual
CPU(s): 80
On-line CPU(s) list: 0-79
Thread(s) per core: 2
Core(s) per socket: 20
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz
Stepping: 4
CPU MHz: 3393.897
CPU max MHz: 3700.0000
CPU min MHz: 1000.0000
BogoMIPS: 4800.00
Virtualization: VT-x
L1d cache: 1.3 MiB
L1i cache: 1.3 MiB
L2 cache: 40 MiB
L3 cache: 55 MiB
NUMA node0 CPU(s): 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78
NUMA node1 CPU(s): 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75,77,79
Vulnerability Gather data sampling: Mitigation; Microcode
Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled
Vulnerability L1tf: Mitigation; PTE Inversion; VMX conditional cache flushes, SMT vulnerable
Vulnerability Mds: Mitigation; Clear CPU buffers; SMT vulnerable
Vulnerability Meltdown: Mitigation; PTI
Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Mitigation; IBRS
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; IBRS; IBPB conditional; STIBP conditional; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT vulnerable
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single pti intel_ppin ssbd mba ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req pku ospke md_clear flush_l1d arch_capabilities

G++:
g++ (Ubuntu 9.4.0-1ubuntu1~20.04) 9.4.0
Copyright (C) 2019 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Clang:
clang version 10.0.0-4ubuntu1
Target: x86_64-pc-linux-gnu
Thread model: posix
InstalledDir: /usr/bin

Copy link
Collaborator

@andrjohns andrjohns left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Just a couple of doc changes, but otherwise LGTM!

Comment on lines 77 to 80
* Vectorized version of inv_logit() for std::vector's containing ad types.
*
* @tparam T type of container
* @param x container
* @tparam T type of std::vector
* @param x std::vector
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This overload would also be used for Eigen types with fvars I think

Comment on lines 95 to 98
* @tparam T A type of either `std::vector` whose inner type inherits from
* `Eigen::DenseBase` or a type that directly inherits from `Eigen::DenseBase`.
* The inner scalar type must not have a `var` scalar type.
* @param x Eigen expression
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This overload would also be for std::vector with inner types of double or std::vector

@jachymb
Copy link

jachymb commented Mar 10, 2025

Note there is also the Eigen::internal::scalar_logistic_op which can be used for the scalar (double) implementation instead of the custom implementation using exp calls. Not sure if there is any noticeable advantage besides shortening the code by a few lines.

@SteveBronder
Copy link
Collaborator Author

@andrjohns ty those docs should be cleaned up now!

@jachymb personally I don't know what the benefit of using Eigen's logistic function for scalars would be. For the vectorized version of the code, using the Eigen logistic function makes sense so we can use their SIMD backend. But for scalars we would want to check the performance and precision before using it. I'm fine with hand waving the vectorized check because using an Eigen internal function is almost always faster for vectors.

Copy link
Collaborator

@andrjohns andrjohns left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM!

@stan-buildbot
Copy link
Contributor


Name Old Result New Result Ratio Performance change( 1 - new / old )
arma/arma.stan 0.3 0.3 0.99 -0.7% slower
low_dim_corr_gauss/low_dim_corr_gauss.stan 0.01 0.01 1.03 2.96% faster
gp_regr/gen_gp_data.stan 0.02 0.02 1.03 2.97% faster
gp_regr/gp_regr.stan 0.09 0.09 1.01 1.23% faster
sir/sir.stan 66.24 67.37 0.98 -1.69% slower
irt_2pl/irt_2pl.stan 3.98 4.0 0.99 -0.6% slower
eight_schools/eight_schools.stan 0.06 0.05 1.06 5.98% faster
pkpd/sim_one_comp_mm_elim_abs.stan 0.26 0.24 1.07 6.88% faster
pkpd/one_comp_mm_elim_abs.stan 18.56 18.73 0.99 -0.91% slower
garch/garch.stan 0.5 0.41 1.23 18.57% faster
low_dim_gauss_mix/low_dim_gauss_mix.stan 2.75 2.59 1.06 5.91% faster
arK/arK.stan 1.86 1.72 1.08 7.51% faster
gp_pois_regr/gp_pois_regr.stan 2.9 2.73 1.06 5.93% faster
low_dim_gauss_mix_collapse/low_dim_gauss_mix_collapse.stan 8.81 8.43 1.05 4.32% faster
performance.compilation 180.18 177.65 1.01 1.4% faster
Mean result: 1.044470247179379

Jenkins Console Log
Blue Ocean
Commit hash: 0d6bd650ebd331395197dd352b2d23d459fb7626


Machine information No LSB modules are available. Distributor ID: Ubuntu Description: Ubuntu 20.04.3 LTS Release: 20.04 Codename: focal

CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 46 bits physical, 48 bits virtual
CPU(s): 80
On-line CPU(s) list: 0-79
Thread(s) per core: 2
Core(s) per socket: 20
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz
Stepping: 4
CPU MHz: 2400.000
CPU max MHz: 3700.0000
CPU min MHz: 1000.0000
BogoMIPS: 4800.00
Virtualization: VT-x
L1d cache: 1.3 MiB
L1i cache: 1.3 MiB
L2 cache: 40 MiB
L3 cache: 55 MiB
NUMA node0 CPU(s): 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78
NUMA node1 CPU(s): 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75,77,79
Vulnerability Gather data sampling: Mitigation; Microcode
Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled
Vulnerability L1tf: Mitigation; PTE Inversion; VMX conditional cache flushes, SMT vulnerable
Vulnerability Mds: Mitigation; Clear CPU buffers; SMT vulnerable
Vulnerability Meltdown: Mitigation; PTI
Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Mitigation; IBRS
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; IBRS; IBPB conditional; STIBP conditional; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT vulnerable
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single pti intel_ppin ssbd mba ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req pku ospke md_clear flush_l1d arch_capabilities

G++:
g++ (Ubuntu 9.4.0-1ubuntu1~20.04) 9.4.0
Copyright (C) 2019 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Clang:
clang version 10.0.0-4ubuntu1
Target: x86_64-pc-linux-gnu
Thread model: posix
InstalledDir: /usr/bin

@SteveBronder SteveBronder merged commit 0717118 into develop Mar 14, 2025
24 checks passed
@WardBrian WardBrian deleted the fix/jachymb-inv_logistic branch March 14, 2025 21:14
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

5 participants